{"title":"p53凋亡刺激蛋白(ASPP)参与调控氨-N和亚硝酸盐-N胁迫下的万年青凋亡","authors":"Xiaoxun Zhou, Hongbiao Zhuo, Lanting Lin, Yuan Zhang, Jinyan Li, Shuo Fu, Guangbo Wu, Chaoan Guo, Jianyong Liu","doi":"10.1016/j.aqrep.2024.102413","DOIUrl":null,"url":null,"abstract":"<div><div>Apoptosis-stimulating protein of p53 (ASPP) is a key regulatory factor closely related to p53 in apoptosis pathway. To further investigate the molecular mechanisms of ASPP in <em>Litopenaeus vannamei</em>, the expression of <em>LvASPP</em> mRNA under ammonia-N and nitrite-N stress was explored, and the effects of knocking out <em>LvASPP</em> on mortality, histological damage, and the apoptosis pathway in <em>L. vannamei</em> under ammonia-N and nitrite-N stress were investigated. Healthy <em>L. vannamei</em> (7.78 ± 0.70 g) were used in this study. After shrimp were stressed with an ammonia-N concentration of 30.00 mg/L for 48 h, qRT-PCR was used to detect a significant increase in <em>LvASPP</em> mRNA expression in the hepatopancreas, gills, and muscle. Following 48 h of nitrite-N stress at a concentration of 60.00 mg/L, <em>LvASPP</em> mRNA expression was significantly increased in the hepatopancreas. The survival rate notably increased under 80 h of ammonia-N stress (25.00 mg/L) after <em>LvASPP</em> RNA interference (30 % more than the control group), and the number of shrimp deaths decreased after 48 h of nitrite-N stress. Moreover, under the stress of ammonia-N and nitrite-N respectively, <em>LvASPP</em> silencing reduced the expression of p53, and led to a decrease in the expression of apoptosis-related genes (Bax, Apaf-1, Caspase 9, MDM2). Caspase 3 activity, TUNEL-positive cells and the apoptotic index in the hepatopancreas markedly reduced under ammonia-N and nitrite-N stress. The potential pathway suggests that inhibiting <em>LvASPP</em> reduces the mRNA expression of p53, which leads to a decrease in Caspase 3 activity, inhibiting apoptosis in the hepatopancreatic cells of <em>L. vannamei</em> under ammonia-N and nitrite-N stress. These data indicate that the knockdown of <em>LvASPP</em> positively impacted the tolerance of <em>L. vannamei</em> to ammonia-N and nitrite-N stress by regulating the apoptosis pathway. This suggests that employing gene-targeted dsRNA could be an effective strategy for alleviating the environmental pressures faced by shrimp in aquaculture management.</div></div>","PeriodicalId":8103,"journal":{"name":"Aquaculture Reports","volume":"39 ","pages":"Article 102413"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Apoptosis-stimulating protein of p53 (ASPP) participates in the regulation of apoptosis in Litopenaeus vannamei under ammonia-N and nitrite-N stress\",\"authors\":\"Xiaoxun Zhou, Hongbiao Zhuo, Lanting Lin, Yuan Zhang, Jinyan Li, Shuo Fu, Guangbo Wu, Chaoan Guo, Jianyong Liu\",\"doi\":\"10.1016/j.aqrep.2024.102413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Apoptosis-stimulating protein of p53 (ASPP) is a key regulatory factor closely related to p53 in apoptosis pathway. To further investigate the molecular mechanisms of ASPP in <em>Litopenaeus vannamei</em>, the expression of <em>LvASPP</em> mRNA under ammonia-N and nitrite-N stress was explored, and the effects of knocking out <em>LvASPP</em> on mortality, histological damage, and the apoptosis pathway in <em>L. vannamei</em> under ammonia-N and nitrite-N stress were investigated. Healthy <em>L. vannamei</em> (7.78 ± 0.70 g) were used in this study. After shrimp were stressed with an ammonia-N concentration of 30.00 mg/L for 48 h, qRT-PCR was used to detect a significant increase in <em>LvASPP</em> mRNA expression in the hepatopancreas, gills, and muscle. Following 48 h of nitrite-N stress at a concentration of 60.00 mg/L, <em>LvASPP</em> mRNA expression was significantly increased in the hepatopancreas. The survival rate notably increased under 80 h of ammonia-N stress (25.00 mg/L) after <em>LvASPP</em> RNA interference (30 % more than the control group), and the number of shrimp deaths decreased after 48 h of nitrite-N stress. Moreover, under the stress of ammonia-N and nitrite-N respectively, <em>LvASPP</em> silencing reduced the expression of p53, and led to a decrease in the expression of apoptosis-related genes (Bax, Apaf-1, Caspase 9, MDM2). Caspase 3 activity, TUNEL-positive cells and the apoptotic index in the hepatopancreas markedly reduced under ammonia-N and nitrite-N stress. The potential pathway suggests that inhibiting <em>LvASPP</em> reduces the mRNA expression of p53, which leads to a decrease in Caspase 3 activity, inhibiting apoptosis in the hepatopancreatic cells of <em>L. vannamei</em> under ammonia-N and nitrite-N stress. These data indicate that the knockdown of <em>LvASPP</em> positively impacted the tolerance of <em>L. vannamei</em> to ammonia-N and nitrite-N stress by regulating the apoptosis pathway. This suggests that employing gene-targeted dsRNA could be an effective strategy for alleviating the environmental pressures faced by shrimp in aquaculture management.</div></div>\",\"PeriodicalId\":8103,\"journal\":{\"name\":\"Aquaculture Reports\",\"volume\":\"39 \",\"pages\":\"Article 102413\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquaculture Reports\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352513424005015\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Reports","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352513424005015","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
Apoptosis-stimulating protein of p53 (ASPP) participates in the regulation of apoptosis in Litopenaeus vannamei under ammonia-N and nitrite-N stress
Apoptosis-stimulating protein of p53 (ASPP) is a key regulatory factor closely related to p53 in apoptosis pathway. To further investigate the molecular mechanisms of ASPP in Litopenaeus vannamei, the expression of LvASPP mRNA under ammonia-N and nitrite-N stress was explored, and the effects of knocking out LvASPP on mortality, histological damage, and the apoptosis pathway in L. vannamei under ammonia-N and nitrite-N stress were investigated. Healthy L. vannamei (7.78 ± 0.70 g) were used in this study. After shrimp were stressed with an ammonia-N concentration of 30.00 mg/L for 48 h, qRT-PCR was used to detect a significant increase in LvASPP mRNA expression in the hepatopancreas, gills, and muscle. Following 48 h of nitrite-N stress at a concentration of 60.00 mg/L, LvASPP mRNA expression was significantly increased in the hepatopancreas. The survival rate notably increased under 80 h of ammonia-N stress (25.00 mg/L) after LvASPP RNA interference (30 % more than the control group), and the number of shrimp deaths decreased after 48 h of nitrite-N stress. Moreover, under the stress of ammonia-N and nitrite-N respectively, LvASPP silencing reduced the expression of p53, and led to a decrease in the expression of apoptosis-related genes (Bax, Apaf-1, Caspase 9, MDM2). Caspase 3 activity, TUNEL-positive cells and the apoptotic index in the hepatopancreas markedly reduced under ammonia-N and nitrite-N stress. The potential pathway suggests that inhibiting LvASPP reduces the mRNA expression of p53, which leads to a decrease in Caspase 3 activity, inhibiting apoptosis in the hepatopancreatic cells of L. vannamei under ammonia-N and nitrite-N stress. These data indicate that the knockdown of LvASPP positively impacted the tolerance of L. vannamei to ammonia-N and nitrite-N stress by regulating the apoptosis pathway. This suggests that employing gene-targeted dsRNA could be an effective strategy for alleviating the environmental pressures faced by shrimp in aquaculture management.
Aquaculture ReportsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
5.90
自引率
8.10%
发文量
469
审稿时长
77 days
期刊介绍:
Aquaculture Reports will publish original research papers and reviews documenting outstanding science with a regional context and focus, answering the need for high quality information on novel species, systems and regions in emerging areas of aquaculture research and development, such as integrated multi-trophic aquaculture, urban aquaculture, ornamental, unfed aquaculture, offshore aquaculture and others. Papers having industry research as priority and encompassing product development research or current industry practice are encouraged.