Balasubramaniam S., Vanajaroselin Chirchi, Seifedine Kadry, Moorthy Agoramoorthy, Gururama Senthilvel P., Satheesh Kumar K., Sivakumar T. A.
{"title":"未来之路:生成式人工智能的新趋势、未决问题和结语--全面回顾","authors":"Balasubramaniam S., Vanajaroselin Chirchi, Seifedine Kadry, Moorthy Agoramoorthy, Gururama Senthilvel P., Satheesh Kumar K., Sivakumar T. A.","doi":"10.1155/2024/4013195","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The field of generative artificial intelligence (AI) is experiencing rapid advancements, impacting a multitude of sectors, from computer vision to healthcare. This paper provides a comprehensive review of generative AI’s evolution, significance, and applications, including the foundational architectures such as generative adversarial networks (GANs), variational autoencoders (VAEs), autoregressive models, flow-based models, and diffusion models. We delve into the impact of generative algorithms on computer vision, natural language processing, artistic creation, and healthcare, demonstrating their revolutionary potential in data augmentation, text and speech synthesis, and medical image interpretation. While the transformative capabilities of generative AI are acknowledged, the paper also examines ethical concerns, most notably the advent of deepfakes, calling for the development of robust detection frameworks and responsible use guidelines. As generative AI continues to evolve, driven by advances in neural network architectures and deep learning methodologies, this paper provides a holistic overview of the current landscape and a roadmap for future research and ethical considerations in generative AI.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2024 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/4013195","citationCount":"0","resultStr":"{\"title\":\"The Road Ahead: Emerging Trends, Unresolved Issues, and Concluding Remarks in Generative AI—A Comprehensive Review\",\"authors\":\"Balasubramaniam S., Vanajaroselin Chirchi, Seifedine Kadry, Moorthy Agoramoorthy, Gururama Senthilvel P., Satheesh Kumar K., Sivakumar T. A.\",\"doi\":\"10.1155/2024/4013195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The field of generative artificial intelligence (AI) is experiencing rapid advancements, impacting a multitude of sectors, from computer vision to healthcare. This paper provides a comprehensive review of generative AI’s evolution, significance, and applications, including the foundational architectures such as generative adversarial networks (GANs), variational autoencoders (VAEs), autoregressive models, flow-based models, and diffusion models. We delve into the impact of generative algorithms on computer vision, natural language processing, artistic creation, and healthcare, demonstrating their revolutionary potential in data augmentation, text and speech synthesis, and medical image interpretation. While the transformative capabilities of generative AI are acknowledged, the paper also examines ethical concerns, most notably the advent of deepfakes, calling for the development of robust detection frameworks and responsible use guidelines. As generative AI continues to evolve, driven by advances in neural network architectures and deep learning methodologies, this paper provides a holistic overview of the current landscape and a roadmap for future research and ethical considerations in generative AI.</p>\\n </div>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/4013195\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/4013195\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/4013195","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
The Road Ahead: Emerging Trends, Unresolved Issues, and Concluding Remarks in Generative AI—A Comprehensive Review
The field of generative artificial intelligence (AI) is experiencing rapid advancements, impacting a multitude of sectors, from computer vision to healthcare. This paper provides a comprehensive review of generative AI’s evolution, significance, and applications, including the foundational architectures such as generative adversarial networks (GANs), variational autoencoders (VAEs), autoregressive models, flow-based models, and diffusion models. We delve into the impact of generative algorithms on computer vision, natural language processing, artistic creation, and healthcare, demonstrating their revolutionary potential in data augmentation, text and speech synthesis, and medical image interpretation. While the transformative capabilities of generative AI are acknowledged, the paper also examines ethical concerns, most notably the advent of deepfakes, calling for the development of robust detection frameworks and responsible use guidelines. As generative AI continues to evolve, driven by advances in neural network architectures and deep learning methodologies, this paper provides a holistic overview of the current landscape and a roadmap for future research and ethical considerations in generative AI.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.