未来之路:生成式人工智能的新趋势、未决问题和结语--全面回顾

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Intelligent Systems Pub Date : 2024-10-08 DOI:10.1155/2024/4013195
Balasubramaniam S., Vanajaroselin Chirchi, Seifedine Kadry, Moorthy Agoramoorthy, Gururama Senthilvel P., Satheesh Kumar K., Sivakumar T. A.
{"title":"未来之路:生成式人工智能的新趋势、未决问题和结语--全面回顾","authors":"Balasubramaniam S.,&nbsp;Vanajaroselin Chirchi,&nbsp;Seifedine Kadry,&nbsp;Moorthy Agoramoorthy,&nbsp;Gururama Senthilvel P.,&nbsp;Satheesh Kumar K.,&nbsp;Sivakumar T. A.","doi":"10.1155/2024/4013195","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The field of generative artificial intelligence (AI) is experiencing rapid advancements, impacting a multitude of sectors, from computer vision to healthcare. This paper provides a comprehensive review of generative AI’s evolution, significance, and applications, including the foundational architectures such as generative adversarial networks (GANs), variational autoencoders (VAEs), autoregressive models, flow-based models, and diffusion models. We delve into the impact of generative algorithms on computer vision, natural language processing, artistic creation, and healthcare, demonstrating their revolutionary potential in data augmentation, text and speech synthesis, and medical image interpretation. While the transformative capabilities of generative AI are acknowledged, the paper also examines ethical concerns, most notably the advent of deepfakes, calling for the development of robust detection frameworks and responsible use guidelines. As generative AI continues to evolve, driven by advances in neural network architectures and deep learning methodologies, this paper provides a holistic overview of the current landscape and a roadmap for future research and ethical considerations in generative AI.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2024 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/4013195","citationCount":"0","resultStr":"{\"title\":\"The Road Ahead: Emerging Trends, Unresolved Issues, and Concluding Remarks in Generative AI—A Comprehensive Review\",\"authors\":\"Balasubramaniam S.,&nbsp;Vanajaroselin Chirchi,&nbsp;Seifedine Kadry,&nbsp;Moorthy Agoramoorthy,&nbsp;Gururama Senthilvel P.,&nbsp;Satheesh Kumar K.,&nbsp;Sivakumar T. A.\",\"doi\":\"10.1155/2024/4013195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The field of generative artificial intelligence (AI) is experiencing rapid advancements, impacting a multitude of sectors, from computer vision to healthcare. This paper provides a comprehensive review of generative AI’s evolution, significance, and applications, including the foundational architectures such as generative adversarial networks (GANs), variational autoencoders (VAEs), autoregressive models, flow-based models, and diffusion models. We delve into the impact of generative algorithms on computer vision, natural language processing, artistic creation, and healthcare, demonstrating their revolutionary potential in data augmentation, text and speech synthesis, and medical image interpretation. While the transformative capabilities of generative AI are acknowledged, the paper also examines ethical concerns, most notably the advent of deepfakes, calling for the development of robust detection frameworks and responsible use guidelines. As generative AI continues to evolve, driven by advances in neural network architectures and deep learning methodologies, this paper provides a holistic overview of the current landscape and a roadmap for future research and ethical considerations in generative AI.</p>\\n </div>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/4013195\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/4013195\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/4013195","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

生成式人工智能(AI)领域正经历着快速发展,影响着从计算机视觉到医疗保健等众多领域。本文全面回顾了生成式人工智能的演变、意义和应用,包括生成对抗网络(GAN)、变异自动编码器(VAE)、自回归模型、基于流的模型和扩散模型等基础架构。我们深入探讨了生成算法对计算机视觉、自然语言处理、艺术创作和医疗保健的影响,展示了它们在数据增强、文本和语音合成以及医学图像解读方面的革命性潜力。在承认生成式人工智能的变革能力的同时,本文还探讨了伦理问题,其中最值得关注的是深度伪造的出现,呼吁开发强大的检测框架和负责任的使用指南。在神经网络架构和深度学习方法进步的推动下,生成式人工智能不断发展,本文全面概述了当前的形势,并为生成式人工智能的未来研究和伦理考虑提供了路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Road Ahead: Emerging Trends, Unresolved Issues, and Concluding Remarks in Generative AI—A Comprehensive Review

The field of generative artificial intelligence (AI) is experiencing rapid advancements, impacting a multitude of sectors, from computer vision to healthcare. This paper provides a comprehensive review of generative AI’s evolution, significance, and applications, including the foundational architectures such as generative adversarial networks (GANs), variational autoencoders (VAEs), autoregressive models, flow-based models, and diffusion models. We delve into the impact of generative algorithms on computer vision, natural language processing, artistic creation, and healthcare, demonstrating their revolutionary potential in data augmentation, text and speech synthesis, and medical image interpretation. While the transformative capabilities of generative AI are acknowledged, the paper also examines ethical concerns, most notably the advent of deepfakes, calling for the development of robust detection frameworks and responsible use guidelines. As generative AI continues to evolve, driven by advances in neural network architectures and deep learning methodologies, this paper provides a holistic overview of the current landscape and a roadmap for future research and ethical considerations in generative AI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
期刊最新文献
K-Means Centroids Initialization Based on Differentiation Between Instances Attributes ViT-AMD: A New Deep Learning Model for Age-Related Macular Degeneration Diagnosis From Fundus Images Switched Observer-Based Event-Triggered Safety Control for Delayed Networked Control Systems Under Aperiodic Cyber attacks An Innovative Application of Swarm-Based Algorithms for Peer Clustering Deepfake Detection Based on the Adaptive Fusion of Spatial-Frequency Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1