求助PDF
{"title":"单乙醇胺水溶液二氧化碳解吸过程参数敏感性分析","authors":"Armando Zanone, José Luis de Paiva","doi":"10.1002/ghg.2299","DOIUrl":null,"url":null,"abstract":"<p>Carbon dioxide (CO<sub>2</sub>) capture technologies are crucial for mitigating climate change, with post-combustion capture (PCC) using chemical absorption being a leading method. However, the energy-intensive solvent regeneration process presents a significant challenge, consuming up to 50% of the total energy in carbon sequestration. Despite extensive research on absorption, desorption studies remain limited. This study focuses on the desorption analysis through experimental runs in a pilot-scale tray column with varying flow rates, validating an Aspen Plus model. The research compares the impact of the number of stages, feed stage position, column pressure, and reflux ratio between equilibrium and rate-based models. The findings reveal enhanced desorption efficiency through optimized operational conditions, including reduced flow rates, additional equilibrium stages, feeding stage positioning closer to the condenser, elevated pressures, and lower reflux ratios. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 5","pages":"713-727"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity analysis of parameters on carbon dioxide desorption processes from aqueous monoethanolamine solution\",\"authors\":\"Armando Zanone, José Luis de Paiva\",\"doi\":\"10.1002/ghg.2299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Carbon dioxide (CO<sub>2</sub>) capture technologies are crucial for mitigating climate change, with post-combustion capture (PCC) using chemical absorption being a leading method. However, the energy-intensive solvent regeneration process presents a significant challenge, consuming up to 50% of the total energy in carbon sequestration. Despite extensive research on absorption, desorption studies remain limited. This study focuses on the desorption analysis through experimental runs in a pilot-scale tray column with varying flow rates, validating an Aspen Plus model. The research compares the impact of the number of stages, feed stage position, column pressure, and reflux ratio between equilibrium and rate-based models. The findings reveal enhanced desorption efficiency through optimized operational conditions, including reduced flow rates, additional equilibrium stages, feeding stage positioning closer to the condenser, elevated pressures, and lower reflux ratios. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.</p>\",\"PeriodicalId\":12796,\"journal\":{\"name\":\"Greenhouse Gases: Science and Technology\",\"volume\":\"14 5\",\"pages\":\"713-727\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Greenhouse Gases: Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2299\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Greenhouse Gases: Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2299","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
引用
批量引用