Solange Doumun OULAI, Sophie Dabo-Niang, Jérémie Zoueu
{"title":"用于疟疾无染色图像归一化的多光谱血涂片背景图像重建技术","authors":"Solange Doumun OULAI, Sophie Dabo-Niang, Jérémie Zoueu","doi":"10.1002/ima.23182","DOIUrl":null,"url":null,"abstract":"<p>Multispectral and multimodal unstained blood smear images are obtained and evaluated to offer computer-assisted automated diagnostic evidence for malaria. However, these images suffer from uneven lighting, contrast variability, and local luminosity due to the acquisition system. This limitation significantly impacts the diagnostic process and its overall outcomes. To overcome this limitation, it is crucial to perform normalization on the acquired multispectral images as a preprocessing step for malaria parasite detection. In this study, we propose a novel method for achieving this normalization, aiming to improve the accuracy and reliability of the diagnostic process. This method is based on estimating the Bright reference image, which captures the luminosity, and the contrast variability function from the background region of the image. This is achieved through two distinct resampling methodologies, namely Gaussian random field simulation by variogram analysis and Bootstrap resampling. A method for handling the intensity saturation issue of certain pixels is also proposed, which involves outlier imputation. Both of these proposed approaches for image normalization are demonstrated to outperform existing methods for multispectral and multimodal unstained blood smear images, as measured by the Structural Similarity Index Measure (SSIM), Mean Squared Error (MSE), Zero mean Sum of Absolute Differences (ZSAD), Peak Signal to Noise Ratio (PSNR), and Absolute Mean Brightness Error (AMBE). These methods not only improve the image contrast but also preserve its spectral footprint and natural appearance more accurately. The normalization technique employing Bootstrap resampling significantly reduces the acquisition time for multimodal and multispectral images by 66%. Moreover, the processing time for Bootstrap resampling is less than 4% of the processing time required for Gaussian random field simulation.</p>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ima.23182","citationCount":"0","resultStr":"{\"title\":\"A Multispectral Blood Smear Background Images Reconstruction for Malaria Unstained Images Normalization\",\"authors\":\"Solange Doumun OULAI, Sophie Dabo-Niang, Jérémie Zoueu\",\"doi\":\"10.1002/ima.23182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multispectral and multimodal unstained blood smear images are obtained and evaluated to offer computer-assisted automated diagnostic evidence for malaria. However, these images suffer from uneven lighting, contrast variability, and local luminosity due to the acquisition system. This limitation significantly impacts the diagnostic process and its overall outcomes. To overcome this limitation, it is crucial to perform normalization on the acquired multispectral images as a preprocessing step for malaria parasite detection. In this study, we propose a novel method for achieving this normalization, aiming to improve the accuracy and reliability of the diagnostic process. This method is based on estimating the Bright reference image, which captures the luminosity, and the contrast variability function from the background region of the image. This is achieved through two distinct resampling methodologies, namely Gaussian random field simulation by variogram analysis and Bootstrap resampling. A method for handling the intensity saturation issue of certain pixels is also proposed, which involves outlier imputation. Both of these proposed approaches for image normalization are demonstrated to outperform existing methods for multispectral and multimodal unstained blood smear images, as measured by the Structural Similarity Index Measure (SSIM), Mean Squared Error (MSE), Zero mean Sum of Absolute Differences (ZSAD), Peak Signal to Noise Ratio (PSNR), and Absolute Mean Brightness Error (AMBE). These methods not only improve the image contrast but also preserve its spectral footprint and natural appearance more accurately. The normalization technique employing Bootstrap resampling significantly reduces the acquisition time for multimodal and multispectral images by 66%. Moreover, the processing time for Bootstrap resampling is less than 4% of the processing time required for Gaussian random field simulation.</p>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"34 6\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ima.23182\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.23182\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23182","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Multispectral Blood Smear Background Images Reconstruction for Malaria Unstained Images Normalization
Multispectral and multimodal unstained blood smear images are obtained and evaluated to offer computer-assisted automated diagnostic evidence for malaria. However, these images suffer from uneven lighting, contrast variability, and local luminosity due to the acquisition system. This limitation significantly impacts the diagnostic process and its overall outcomes. To overcome this limitation, it is crucial to perform normalization on the acquired multispectral images as a preprocessing step for malaria parasite detection. In this study, we propose a novel method for achieving this normalization, aiming to improve the accuracy and reliability of the diagnostic process. This method is based on estimating the Bright reference image, which captures the luminosity, and the contrast variability function from the background region of the image. This is achieved through two distinct resampling methodologies, namely Gaussian random field simulation by variogram analysis and Bootstrap resampling. A method for handling the intensity saturation issue of certain pixels is also proposed, which involves outlier imputation. Both of these proposed approaches for image normalization are demonstrated to outperform existing methods for multispectral and multimodal unstained blood smear images, as measured by the Structural Similarity Index Measure (SSIM), Mean Squared Error (MSE), Zero mean Sum of Absolute Differences (ZSAD), Peak Signal to Noise Ratio (PSNR), and Absolute Mean Brightness Error (AMBE). These methods not only improve the image contrast but also preserve its spectral footprint and natural appearance more accurately. The normalization technique employing Bootstrap resampling significantly reduces the acquisition time for multimodal and multispectral images by 66%. Moreover, the processing time for Bootstrap resampling is less than 4% of the processing time required for Gaussian random field simulation.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.