Wen Shan, Guodong Liu, Chulei Deng, Yu Wei, Ke Ding
{"title":"绿原酸通过Keap1阻断激活血管性痴呆大鼠的Nrf2/GPX4通路减轻铁氧化作用","authors":"Wen Shan, Guodong Liu, Chulei Deng, Yu Wei, Ke Ding","doi":"10.1155/2024/7848982","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Chlorogenic acid (CGA) is a dietary phenolic acid widely distributed in daily food and plants, but its role in vascular dementia (VaD) is still unclear. Hence, this study aimed to investigate whether CGA could rescue cognitive impairment in VaD, providing a new option for drug discovery. Novel object recognition and Morris water maze experiments revealed that CGA enhanced the learning and memory abilities in VaD rats. Nissl staining, Western blot, and transmission electron microscopy results demonstrated that CGA inhibited neuronal loss in the hippocampal CA1 region of VaD rats, increased the expression of synaptic-related markers SYP and PSD95, thickened the postsynaptic density, and suppressed mitochondrial ridge rupture in neurons. GSH detection, MDA detection, and Western blot experiments indicated that CGA alleviated hippocampal GSH reduction and MDA elevation and increased the protein levels of GPX4 and SLC7A11. Cell activity, ROS detection, lipid peroxidation detection, intracellular Fe<sup>2+</sup> level detection, GSH detection, and Western blot revealed that CGA inhibited the increase of intracellular Fe<sup>2+</sup>, ROS, and lipid peroxidation induced by OGD in PC12 cells, mitigated GSH reduction, and increased the protein levels of GPX4, SLC7A11, SYP, and PSD95. Western blot and immunofluorescence staining showed that CGA increased the expression of pSer40-Nrf2 in the hippocampal tissue of VaD rats and PC12 cells, promoting Nrf2 nuclear translocation. Knockdown of Nrf2 prevented CGA from rescuing ferroptosis and synaptic damage induced by OGD in PC12 cells, as well as Nrf2 pathway activation. Molecular docking analysis suggested that CGA competitively bound to the Kelch domain of Keap1 with Nrf2 and then promoted Nrf2 release and activated downstream signaling pathways. In conclusion, our study suggests that CGA may activate the Nrf2 signaling pathway by disrupting the interaction between Nrf2 and Keap1 proteins, thereby inhibiting hippocampal neuronal ferroptosis and synaptic damage and ameliorating cognitive impairment in VaD. <i>Practical Applications</i>. Vascular dementia (VaD) stands as the second most prevalent type of dementia following Alzheimer’s disease. However, there is no effective clinical treatment drug available, and its pathogenic mechanisms remain elusive. This study proposed that CGA might activate the Nrf2-GPX4 signaling pathway by competitively binding to Keap1, thereby attenuating hippocampal neuronal ferroptosis and synaptic damage and consequently ameliorating cognitive impairment in VaD. Our study may provide a novel option for drug research and development for VaD.</p>\n </div>","PeriodicalId":15802,"journal":{"name":"Journal of Food Biochemistry","volume":"2024 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7848982","citationCount":"0","resultStr":"{\"title\":\"Chlorogenic Acid Mitigates Ferroptosis by Activating the Nrf2/GPX4 Pathway through Keap1 Blockade in Vascular Dementia Rats\",\"authors\":\"Wen Shan, Guodong Liu, Chulei Deng, Yu Wei, Ke Ding\",\"doi\":\"10.1155/2024/7848982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Chlorogenic acid (CGA) is a dietary phenolic acid widely distributed in daily food and plants, but its role in vascular dementia (VaD) is still unclear. Hence, this study aimed to investigate whether CGA could rescue cognitive impairment in VaD, providing a new option for drug discovery. Novel object recognition and Morris water maze experiments revealed that CGA enhanced the learning and memory abilities in VaD rats. Nissl staining, Western blot, and transmission electron microscopy results demonstrated that CGA inhibited neuronal loss in the hippocampal CA1 region of VaD rats, increased the expression of synaptic-related markers SYP and PSD95, thickened the postsynaptic density, and suppressed mitochondrial ridge rupture in neurons. GSH detection, MDA detection, and Western blot experiments indicated that CGA alleviated hippocampal GSH reduction and MDA elevation and increased the protein levels of GPX4 and SLC7A11. Cell activity, ROS detection, lipid peroxidation detection, intracellular Fe<sup>2+</sup> level detection, GSH detection, and Western blot revealed that CGA inhibited the increase of intracellular Fe<sup>2+</sup>, ROS, and lipid peroxidation induced by OGD in PC12 cells, mitigated GSH reduction, and increased the protein levels of GPX4, SLC7A11, SYP, and PSD95. Western blot and immunofluorescence staining showed that CGA increased the expression of pSer40-Nrf2 in the hippocampal tissue of VaD rats and PC12 cells, promoting Nrf2 nuclear translocation. Knockdown of Nrf2 prevented CGA from rescuing ferroptosis and synaptic damage induced by OGD in PC12 cells, as well as Nrf2 pathway activation. Molecular docking analysis suggested that CGA competitively bound to the Kelch domain of Keap1 with Nrf2 and then promoted Nrf2 release and activated downstream signaling pathways. In conclusion, our study suggests that CGA may activate the Nrf2 signaling pathway by disrupting the interaction between Nrf2 and Keap1 proteins, thereby inhibiting hippocampal neuronal ferroptosis and synaptic damage and ameliorating cognitive impairment in VaD. <i>Practical Applications</i>. Vascular dementia (VaD) stands as the second most prevalent type of dementia following Alzheimer’s disease. However, there is no effective clinical treatment drug available, and its pathogenic mechanisms remain elusive. This study proposed that CGA might activate the Nrf2-GPX4 signaling pathway by competitively binding to Keap1, thereby attenuating hippocampal neuronal ferroptosis and synaptic damage and consequently ameliorating cognitive impairment in VaD. Our study may provide a novel option for drug research and development for VaD.</p>\\n </div>\",\"PeriodicalId\":15802,\"journal\":{\"name\":\"Journal of Food Biochemistry\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7848982\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Biochemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/7848982\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/7848982","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Chlorogenic Acid Mitigates Ferroptosis by Activating the Nrf2/GPX4 Pathway through Keap1 Blockade in Vascular Dementia Rats
Chlorogenic acid (CGA) is a dietary phenolic acid widely distributed in daily food and plants, but its role in vascular dementia (VaD) is still unclear. Hence, this study aimed to investigate whether CGA could rescue cognitive impairment in VaD, providing a new option for drug discovery. Novel object recognition and Morris water maze experiments revealed that CGA enhanced the learning and memory abilities in VaD rats. Nissl staining, Western blot, and transmission electron microscopy results demonstrated that CGA inhibited neuronal loss in the hippocampal CA1 region of VaD rats, increased the expression of synaptic-related markers SYP and PSD95, thickened the postsynaptic density, and suppressed mitochondrial ridge rupture in neurons. GSH detection, MDA detection, and Western blot experiments indicated that CGA alleviated hippocampal GSH reduction and MDA elevation and increased the protein levels of GPX4 and SLC7A11. Cell activity, ROS detection, lipid peroxidation detection, intracellular Fe2+ level detection, GSH detection, and Western blot revealed that CGA inhibited the increase of intracellular Fe2+, ROS, and lipid peroxidation induced by OGD in PC12 cells, mitigated GSH reduction, and increased the protein levels of GPX4, SLC7A11, SYP, and PSD95. Western blot and immunofluorescence staining showed that CGA increased the expression of pSer40-Nrf2 in the hippocampal tissue of VaD rats and PC12 cells, promoting Nrf2 nuclear translocation. Knockdown of Nrf2 prevented CGA from rescuing ferroptosis and synaptic damage induced by OGD in PC12 cells, as well as Nrf2 pathway activation. Molecular docking analysis suggested that CGA competitively bound to the Kelch domain of Keap1 with Nrf2 and then promoted Nrf2 release and activated downstream signaling pathways. In conclusion, our study suggests that CGA may activate the Nrf2 signaling pathway by disrupting the interaction between Nrf2 and Keap1 proteins, thereby inhibiting hippocampal neuronal ferroptosis and synaptic damage and ameliorating cognitive impairment in VaD. Practical Applications. Vascular dementia (VaD) stands as the second most prevalent type of dementia following Alzheimer’s disease. However, there is no effective clinical treatment drug available, and its pathogenic mechanisms remain elusive. This study proposed that CGA might activate the Nrf2-GPX4 signaling pathway by competitively binding to Keap1, thereby attenuating hippocampal neuronal ferroptosis and synaptic damage and consequently ameliorating cognitive impairment in VaD. Our study may provide a novel option for drug research and development for VaD.
期刊介绍:
The Journal of Food Biochemistry publishes fully peer-reviewed original research and review papers on the effects of handling, storage, and processing on the biochemical aspects of food tissues, systems, and bioactive compounds in the diet.
Researchers in food science, food technology, biochemistry, and nutrition, particularly based in academia and industry, will find much of great use and interest in the journal. Coverage includes:
-Biochemistry of postharvest/postmortem and processing problems
-Enzyme chemistry and technology
-Membrane biology and chemistry
-Cell biology
-Biophysics
-Genetic expression
-Pharmacological properties of food ingredients with an emphasis on the content of bioactive ingredients in foods
Examples of topics covered in recently-published papers on two topics of current wide interest, nutraceuticals/functional foods and postharvest/postmortem, include the following:
-Bioactive compounds found in foods, such as chocolate and herbs, as they affect serum cholesterol, diabetes, hypertension, and heart disease
-The mechanism of the ripening process in fruit
-The biogenesis of flavor precursors in meat
-How biochemical changes in farm-raised fish are affecting processing and edible quality