{"title":"环境条件下大气气溶胶前体形成的计算研究:海盐、水和硫酸分子之间相互作用的案例研究","authors":"Dhyani Vadgama, Rohit Srivastava, Satyam Shinde","doi":"10.1002/qua.27489","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Cluster formation has significant implications in atmospheric science and environmental chemistry. These clusters are characterized by complex interactions between their constituents, which influence their structure, stability, and growth. Experimental investigations are difficult for the initial stages of prenucleation cluster formation, which leads to larger aerosols. To understand the formation of clusters, the interactions between sea salts (NaCl, KCl, and MgCl<sub>2</sub>), water, and sulfuric acid molecules have been investigated. Each step has been comprehensively examined and thermodynamic parameters have been computed using DLPNO-CCSD(T)/CBS//M06-2X/6-311++G(3df,3pd) to find the stabilities of the molecular complexes. Among all complexes, the binding energies of cluster (SS)<sub>1</sub>(W)<sub>1</sub>(SA)<sub>3</sub> are found to be the lowest due to the formation of HCl, hydrogen bonding, and weak van der Waal forces. Sea salts have shown a more favorable interaction with H<sub>2</sub>SO<sub>4</sub> compared to H<sub>2</sub>O molecules. The addition of H<sub>2</sub>SO<sub>4</sub> increases the reactivity of the cluster (SS)<sub>1</sub>(W)<sub><i>n</i></sub>, while the addition of H<sub>2</sub>O molecules reduces the reactivity of the cluster (SS)<sub>1</sub>(SA)<sub><i>n</i></sub>. However, further addition of H<sub>2</sub>SO<sub>4</sub> or H<sub>2</sub>O to the existing cluster (SS)<sub>1</sub>(W)<sub><i>n</i></sub>(SA)<sub><i>n</i></sub> increases the free energy of formation. Furthermore, the influence of temperature was also investigated, suggesting that complex formation is slightly more favorable at lower temperatures than at higher temperatures. The negative values of thermodynamic parameters indicate, that these complexes are spontaneous and exothermic over the colder regions.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Study of the Formation of Atmospheric Aerosol Precursors Under Ambient Conditions: A Case Study of the Interaction Between Sea Salt, Water, and Sulfuric Acid Molecules\",\"authors\":\"Dhyani Vadgama, Rohit Srivastava, Satyam Shinde\",\"doi\":\"10.1002/qua.27489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Cluster formation has significant implications in atmospheric science and environmental chemistry. These clusters are characterized by complex interactions between their constituents, which influence their structure, stability, and growth. Experimental investigations are difficult for the initial stages of prenucleation cluster formation, which leads to larger aerosols. To understand the formation of clusters, the interactions between sea salts (NaCl, KCl, and MgCl<sub>2</sub>), water, and sulfuric acid molecules have been investigated. Each step has been comprehensively examined and thermodynamic parameters have been computed using DLPNO-CCSD(T)/CBS//M06-2X/6-311++G(3df,3pd) to find the stabilities of the molecular complexes. Among all complexes, the binding energies of cluster (SS)<sub>1</sub>(W)<sub>1</sub>(SA)<sub>3</sub> are found to be the lowest due to the formation of HCl, hydrogen bonding, and weak van der Waal forces. Sea salts have shown a more favorable interaction with H<sub>2</sub>SO<sub>4</sub> compared to H<sub>2</sub>O molecules. The addition of H<sub>2</sub>SO<sub>4</sub> increases the reactivity of the cluster (SS)<sub>1</sub>(W)<sub><i>n</i></sub>, while the addition of H<sub>2</sub>O molecules reduces the reactivity of the cluster (SS)<sub>1</sub>(SA)<sub><i>n</i></sub>. However, further addition of H<sub>2</sub>SO<sub>4</sub> or H<sub>2</sub>O to the existing cluster (SS)<sub>1</sub>(W)<sub><i>n</i></sub>(SA)<sub><i>n</i></sub> increases the free energy of formation. Furthermore, the influence of temperature was also investigated, suggesting that complex formation is slightly more favorable at lower temperatures than at higher temperatures. The negative values of thermodynamic parameters indicate, that these complexes are spontaneous and exothermic over the colder regions.</p>\\n </div>\",\"PeriodicalId\":182,\"journal\":{\"name\":\"International Journal of Quantum Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qua.27489\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.27489","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Computational Study of the Formation of Atmospheric Aerosol Precursors Under Ambient Conditions: A Case Study of the Interaction Between Sea Salt, Water, and Sulfuric Acid Molecules
Cluster formation has significant implications in atmospheric science and environmental chemistry. These clusters are characterized by complex interactions between their constituents, which influence their structure, stability, and growth. Experimental investigations are difficult for the initial stages of prenucleation cluster formation, which leads to larger aerosols. To understand the formation of clusters, the interactions between sea salts (NaCl, KCl, and MgCl2), water, and sulfuric acid molecules have been investigated. Each step has been comprehensively examined and thermodynamic parameters have been computed using DLPNO-CCSD(T)/CBS//M06-2X/6-311++G(3df,3pd) to find the stabilities of the molecular complexes. Among all complexes, the binding energies of cluster (SS)1(W)1(SA)3 are found to be the lowest due to the formation of HCl, hydrogen bonding, and weak van der Waal forces. Sea salts have shown a more favorable interaction with H2SO4 compared to H2O molecules. The addition of H2SO4 increases the reactivity of the cluster (SS)1(W)n, while the addition of H2O molecules reduces the reactivity of the cluster (SS)1(SA)n. However, further addition of H2SO4 or H2O to the existing cluster (SS)1(W)n(SA)n increases the free energy of formation. Furthermore, the influence of temperature was also investigated, suggesting that complex formation is slightly more favorable at lower temperatures than at higher temperatures. The negative values of thermodynamic parameters indicate, that these complexes are spontaneous and exothermic over the colder regions.
期刊介绍:
Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.