基于共价有机框架的纳米复合材料的进展:用于减少和储存二氧化碳的先锋材料

IF 2.7 4区 环境科学与生态学 Q3 ENERGY & FUELS Greenhouse Gases: Science and Technology Pub Date : 2024-08-15 DOI:10.1002/ghg.2297
Pallavi Singh, Pragnesh N Dave
{"title":"基于共价有机框架的纳米复合材料的进展:用于减少和储存二氧化碳的先锋材料","authors":"Pallavi Singh,&nbsp;Pragnesh N Dave","doi":"10.1002/ghg.2297","DOIUrl":null,"url":null,"abstract":"<p>The persistent increase in atmospheric carbon dioxide (CO<sub>2</sub>) concentration poses a significant contemporary challenge. Contemporary chemistry is heavily focused on sustainable solutions, particularly the photo-/electrocatalytic reduction of CO<sub>2</sub> and its utilization for energy storage. Despite promising prospects, efficient chemical CO<sub>2</sub> conversion faces obstacles such as ineffective CO<sub>2</sub> uptake/activation and catalyst mass transport. Covalent organic frameworks (COFs) have emerged as potential catalysts due to their precise structural design, functionalizable chemical environments, and robust architectures. COF-based materials, especially those incorporating diverse active sites like single metal sites, metal nanoparticles, and metal oxides, hold promise for CO<sub>2</sub> conversion and energy storage. This review sheds light on CO<sub>2</sub> photoreduction/electroreduction and storage in Li-CO<sub>2</sub> batteries catalyzed by COF-based composites, focusing on recent advancements in integrating COFs with nanoparticles for CO<sub>2</sub> reduction. It discusses design principles, synthesis methods, and catalytic mechanisms driving the enhanced performance of COF-based nanocomposites across various applications, including electrochemical reduction, photocatalysis, and lithium CO<sub>2</sub> batteries. The review also addresses challenges and prospects of COF-based catalysts for efficient CO<sub>2</sub> utilization, aiming to steer the development of innovative COF-based nanocomposites, thus advancing sustainable energy technologies and environmental stewardship. © 2024 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 5","pages":"914-938"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in covalent organic framework-based nanocomposites: Pioneering materials for CO2 reduction and storage\",\"authors\":\"Pallavi Singh,&nbsp;Pragnesh N Dave\",\"doi\":\"10.1002/ghg.2297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The persistent increase in atmospheric carbon dioxide (CO<sub>2</sub>) concentration poses a significant contemporary challenge. Contemporary chemistry is heavily focused on sustainable solutions, particularly the photo-/electrocatalytic reduction of CO<sub>2</sub> and its utilization for energy storage. Despite promising prospects, efficient chemical CO<sub>2</sub> conversion faces obstacles such as ineffective CO<sub>2</sub> uptake/activation and catalyst mass transport. Covalent organic frameworks (COFs) have emerged as potential catalysts due to their precise structural design, functionalizable chemical environments, and robust architectures. COF-based materials, especially those incorporating diverse active sites like single metal sites, metal nanoparticles, and metal oxides, hold promise for CO<sub>2</sub> conversion and energy storage. This review sheds light on CO<sub>2</sub> photoreduction/electroreduction and storage in Li-CO<sub>2</sub> batteries catalyzed by COF-based composites, focusing on recent advancements in integrating COFs with nanoparticles for CO<sub>2</sub> reduction. It discusses design principles, synthesis methods, and catalytic mechanisms driving the enhanced performance of COF-based nanocomposites across various applications, including electrochemical reduction, photocatalysis, and lithium CO<sub>2</sub> batteries. The review also addresses challenges and prospects of COF-based catalysts for efficient CO<sub>2</sub> utilization, aiming to steer the development of innovative COF-based nanocomposites, thus advancing sustainable energy technologies and environmental stewardship. © 2024 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>\",\"PeriodicalId\":12796,\"journal\":{\"name\":\"Greenhouse Gases: Science and Technology\",\"volume\":\"14 5\",\"pages\":\"914-938\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Greenhouse Gases: Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2297\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Greenhouse Gases: Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2297","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

大气中二氧化碳(CO2)浓度的持续上升对当代提出了重大挑战。当代化学高度关注可持续的解决方案,特别是光催化/电催化还原二氧化碳并将其用于能源储存。尽管前景广阔,但高效的二氧化碳化学转化仍面临着二氧化碳吸收/活化效果不佳和催化剂质量迁移等障碍。共价有机框架(COF)因其精确的结构设计、可功能化的化学环境和坚固的结构而成为潜在的催化剂。以 COF 为基础的材料,尤其是那些包含多种活性位点(如单一金属位点、金属纳米颗粒和金属氧化物)的材料,有望用于二氧化碳转化和能量存储。本综述阐明了 COF 基复合材料催化的 CO2 光还原/电还原以及锂-CO2 电池中的 CO2 储能,重点介绍了将 COF 与纳米颗粒整合用于 CO2 还原的最新进展。报告讨论了设计原理、合成方法和催化机制,这些因素推动了基于 COF 的纳米复合材料在电化学还原、光催化和二氧化碳锂电池等各种应用中性能的提高。综述还探讨了基于 COF 的催化剂在高效利用二氧化碳方面所面临的挑战和前景,旨在引导基于 COF 的创新型纳米复合材料的发展,从而推动可持续能源技术和环境管理。© 2024 化学工业协会和 John Wiley & Sons, Ltd. 保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advancements in covalent organic framework-based nanocomposites: Pioneering materials for CO2 reduction and storage

The persistent increase in atmospheric carbon dioxide (CO2) concentration poses a significant contemporary challenge. Contemporary chemistry is heavily focused on sustainable solutions, particularly the photo-/electrocatalytic reduction of CO2 and its utilization for energy storage. Despite promising prospects, efficient chemical CO2 conversion faces obstacles such as ineffective CO2 uptake/activation and catalyst mass transport. Covalent organic frameworks (COFs) have emerged as potential catalysts due to their precise structural design, functionalizable chemical environments, and robust architectures. COF-based materials, especially those incorporating diverse active sites like single metal sites, metal nanoparticles, and metal oxides, hold promise for CO2 conversion and energy storage. This review sheds light on CO2 photoreduction/electroreduction and storage in Li-CO2 batteries catalyzed by COF-based composites, focusing on recent advancements in integrating COFs with nanoparticles for CO2 reduction. It discusses design principles, synthesis methods, and catalytic mechanisms driving the enhanced performance of COF-based nanocomposites across various applications, including electrochemical reduction, photocatalysis, and lithium CO2 batteries. The review also addresses challenges and prospects of COF-based catalysts for efficient CO2 utilization, aiming to steer the development of innovative COF-based nanocomposites, thus advancing sustainable energy technologies and environmental stewardship. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Greenhouse Gases: Science and Technology
Greenhouse Gases: Science and Technology ENERGY & FUELS-ENGINEERING, ENVIRONMENTAL
CiteScore
4.90
自引率
4.50%
发文量
55
审稿时长
3 months
期刊介绍: Greenhouse Gases: Science and Technology is a new online-only scientific journal dedicated to the management of greenhouse gases. The journal will focus on methods for carbon capture and storage (CCS), as well as utilization of carbon dioxide (CO2) as a feedstock for fuels and chemicals. GHG will also provide insight into strategies to mitigate emissions of other greenhouse gases. Significant advances will be explored in critical reviews, commentary articles and short communications of broad interest. In addition, the journal will offer analyses of relevant economic and political issues, industry developments and case studies. Greenhouse Gases: Science and Technology is an exciting new online-only journal published as a co-operative venture of the SCI (Society of Chemical Industry) and John Wiley & Sons, Ltd
期刊最新文献
Issue Information Core-flooding experiments of various concentrations of CO2/N2 mixture in different rocks: II. Effect of rock properties on residual water Development of a multicomponent counter-current flow model to evaluate the impact of oxygen and water vapor on CO2 removal performance in a hollow fiber membrane contactor Invasion percolation & basin modelling for CCS site screening and characterization A study on degradation and CO2 capture performance of aqueous amino acid salts for direct air capture applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1