Wan Nabilah Manan, Wan Nor Roslam Wan Isahak, Zahira Yaakob, Salma Samidin, Khairul Naim Ahmad, Mohd Nor Latif, Ali Faris Aldoghachi, Yun Hin Taufiq-Yap
Exploring enhanced syngas production via the catalytic performance of metal-doped X-Ni/CeO2 (X = Zr, La, Sr) in the dry reforming of methane
Background
The quest to manufacture large amounts of syngas to bridge fossil fuels and the renewable energy ecosystem stimulates the creation of efficient and stable heterogeneous catalysts. The NiCeO2 catalysts, synthesized via ultrasonic-assisted citric acid complexation, are highly efficient for the dry reforming of methane (DRM) reaction. Different promoter metals (Zr, La and Sr) were tested for catalytic performance and syngas production. A range of analyses, including X-ray diffraction (XRD), N2 physisorption, H2 temperature-programmed reduction, CO2 temperature-programmed desorption, field emission scanning electron microscopy (FESEM), transmission electron microscopy and X-ray photoelectron spectroscopy, were employed to characterize the physicochemical properties of the catalysts.
Results
XRD results indicated the formation of NiO, CeO2, solid solution ceria–zirconia, perovskite LaNiO3 and SrNiO3 crystalline phases. FESEM results showed the promoted catalysts (Zr, La, Sr) produce large pores to facilitate reactant diffusion, with zirconia specifically creating a spiderweb morphology. At 800 °C, the CH4 and CO2 conversions follow the sequence of NiCeO2 catalyst (CH4 = 54%, CO2 = 45%) < Sr/NiCeO2 (CH4 = 60%, CO2 = 67%) < La/NiCeO2 (CH4 = 85%, CO2 = 84%) < Zr/NiCeO2 (CH4 = 95%, CO2 = 87%). The integration of promoters in DRM catalysts has notably improved carbon formation resistance, as evidenced by the following ranking: Zr/NiCeO2 (5.1 wt%) < commercial catalyst (6.0 wt%) < La/NiCeO2 (7.85 wt%) < Sr/NiCeO2 (10.9 wt%) < NiCeO2 (11.3 wt%).
期刊介绍:
Journal of Chemical Technology and Biotechnology(JCTB) is an international, inter-disciplinary peer-reviewed journal concerned with the application of scientific discoveries and advancements in chemical and biological technology that aim towards economically and environmentally sustainable industrial processes.