Megan E. Mitchell, Charles F. Majkrzak, David P. Hoogerheide
{"title":"利用密度梯度最大限度地提高薄流室的交换效率","authors":"Megan E. Mitchell, Charles F. Majkrzak, David P. Hoogerheide","doi":"10.1107/S1600576724007283","DOIUrl":null,"url":null,"abstract":"<p>Flow cells are ubiquitous in laboratories and automated instrumentation, and are crucial for ease of sample preparation, analyte addition and buffer exchange. The assumption that the fluids have exchanged completely in a flow cell is often critical to data interpretation. This article describes the buoyancy effects on the exchange of fluids with differing densities or viscosities in thin, circular flow cells. Depending on the flow direction, fluid exchange varies from highly efficient to drastically incomplete, even after a large excess of exchange volume. Numerical solutions to the Navier–Stokes and Cahn–Hilliard equations match well with experimental observations. This leads to quantitative predictions of the conditions where buoyancy forces in thin flow cells are significant. A novel method is introduced for exchanging fluid cells by accounting for and utilizing buoyancy effects that can be essential to obtain accurate results from measurements performed within closed-volume fluid environments.</p>","PeriodicalId":48737,"journal":{"name":"Journal of Applied Crystallography","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximally efficient exchange in thin flow cells using density gradients\",\"authors\":\"Megan E. Mitchell, Charles F. Majkrzak, David P. Hoogerheide\",\"doi\":\"10.1107/S1600576724007283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flow cells are ubiquitous in laboratories and automated instrumentation, and are crucial for ease of sample preparation, analyte addition and buffer exchange. The assumption that the fluids have exchanged completely in a flow cell is often critical to data interpretation. This article describes the buoyancy effects on the exchange of fluids with differing densities or viscosities in thin, circular flow cells. Depending on the flow direction, fluid exchange varies from highly efficient to drastically incomplete, even after a large excess of exchange volume. Numerical solutions to the Navier–Stokes and Cahn–Hilliard equations match well with experimental observations. This leads to quantitative predictions of the conditions where buoyancy forces in thin flow cells are significant. A novel method is introduced for exchanging fluid cells by accounting for and utilizing buoyancy effects that can be essential to obtain accurate results from measurements performed within closed-volume fluid environments.</p>\",\"PeriodicalId\":48737,\"journal\":{\"name\":\"Journal of Applied Crystallography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Crystallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1107/S1600576724007283\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1107/S1600576724007283","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Maximally efficient exchange in thin flow cells using density gradients
Flow cells are ubiquitous in laboratories and automated instrumentation, and are crucial for ease of sample preparation, analyte addition and buffer exchange. The assumption that the fluids have exchanged completely in a flow cell is often critical to data interpretation. This article describes the buoyancy effects on the exchange of fluids with differing densities or viscosities in thin, circular flow cells. Depending on the flow direction, fluid exchange varies from highly efficient to drastically incomplete, even after a large excess of exchange volume. Numerical solutions to the Navier–Stokes and Cahn–Hilliard equations match well with experimental observations. This leads to quantitative predictions of the conditions where buoyancy forces in thin flow cells are significant. A novel method is introduced for exchanging fluid cells by accounting for and utilizing buoyancy effects that can be essential to obtain accurate results from measurements performed within closed-volume fluid environments.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.