Hoon Kim, Soyeon Kim, Taylor Wade, Eunchae Yeo, Anuja Lipsa, Anna Golebiewska, Kevin C. Johnson, Sepil An, Junyong Ko, Yoonjoo Nam, Hwa Yeon Lee, Seunghyun Kang, Heesuk Chung, Simone P. Niclou, Hyo-Eun Moon, Sun Ha Paek, Vineet Bafna, Jens Luebeck, Roel G. W. Verhaak
{"title":"绘制癌症进展过程中染色体外 DNA 扩增的图谱","authors":"Hoon Kim, Soyeon Kim, Taylor Wade, Eunchae Yeo, Anuja Lipsa, Anna Golebiewska, Kevin C. Johnson, Sepil An, Junyong Ko, Yoonjoo Nam, Hwa Yeon Lee, Seunghyun Kang, Heesuk Chung, Simone P. Niclou, Hyo-Eun Moon, Sun Ha Paek, Vineet Bafna, Jens Luebeck, Roel G. W. Verhaak","doi":"10.1038/s41588-024-01949-7","DOIUrl":null,"url":null,"abstract":"To understand the role of extrachromosomal DNA (ecDNA) amplifications in cancer progression, we detected and classified focal amplifications in 8,060 newly diagnosed primary cancers, untreated metastases and heavily pretreated tumors. The ecDNAs were detected at significantly higher frequency in untreated metastatic and pretreated tumors compared to newly diagnosed cancers. Tumors from chemotherapy-pretreated patients showed significantly higher ecDNA frequency compared to untreated cancers. In particular, tubulin inhibition associated with ecDNA increases, suggesting a role for ecDNA in treatment response. In longitudinally matched tumor samples, ecDNAs were more likely to be retained compared to chromosomal amplifications. EcDNAs shared between time points, and ecDNAs in advanced cancers were more likely to harbor localized hypermutation events compared to private ecDNAs and ecDNAs in newly diagnosed tumors. Relatively high variant allele fractions of ecDNA localized hypermutations implicated early ecDNA mutagenesis. Our findings nominate ecDNAs to provide tumors with competitive advantages during cancer progression and metastasis. A pan-cancer genomic analysis finds an increase of extrachromosomal DNA (ecDNA) in treated and metastatic tumors compared to primary, untreated samples, as well as ecDNA features enriched in advanced disease.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"56 11","pages":"2447-2454"},"PeriodicalIF":31.7000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41588-024-01949-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Mapping extrachromosomal DNA amplifications during cancer progression\",\"authors\":\"Hoon Kim, Soyeon Kim, Taylor Wade, Eunchae Yeo, Anuja Lipsa, Anna Golebiewska, Kevin C. Johnson, Sepil An, Junyong Ko, Yoonjoo Nam, Hwa Yeon Lee, Seunghyun Kang, Heesuk Chung, Simone P. Niclou, Hyo-Eun Moon, Sun Ha Paek, Vineet Bafna, Jens Luebeck, Roel G. W. Verhaak\",\"doi\":\"10.1038/s41588-024-01949-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To understand the role of extrachromosomal DNA (ecDNA) amplifications in cancer progression, we detected and classified focal amplifications in 8,060 newly diagnosed primary cancers, untreated metastases and heavily pretreated tumors. The ecDNAs were detected at significantly higher frequency in untreated metastatic and pretreated tumors compared to newly diagnosed cancers. Tumors from chemotherapy-pretreated patients showed significantly higher ecDNA frequency compared to untreated cancers. In particular, tubulin inhibition associated with ecDNA increases, suggesting a role for ecDNA in treatment response. In longitudinally matched tumor samples, ecDNAs were more likely to be retained compared to chromosomal amplifications. EcDNAs shared between time points, and ecDNAs in advanced cancers were more likely to harbor localized hypermutation events compared to private ecDNAs and ecDNAs in newly diagnosed tumors. Relatively high variant allele fractions of ecDNA localized hypermutations implicated early ecDNA mutagenesis. Our findings nominate ecDNAs to provide tumors with competitive advantages during cancer progression and metastasis. A pan-cancer genomic analysis finds an increase of extrachromosomal DNA (ecDNA) in treated and metastatic tumors compared to primary, untreated samples, as well as ecDNA features enriched in advanced disease.\",\"PeriodicalId\":18985,\"journal\":{\"name\":\"Nature genetics\",\"volume\":\"56 11\",\"pages\":\"2447-2454\"},\"PeriodicalIF\":31.7000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41588-024-01949-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41588-024-01949-7\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41588-024-01949-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Mapping extrachromosomal DNA amplifications during cancer progression
To understand the role of extrachromosomal DNA (ecDNA) amplifications in cancer progression, we detected and classified focal amplifications in 8,060 newly diagnosed primary cancers, untreated metastases and heavily pretreated tumors. The ecDNAs were detected at significantly higher frequency in untreated metastatic and pretreated tumors compared to newly diagnosed cancers. Tumors from chemotherapy-pretreated patients showed significantly higher ecDNA frequency compared to untreated cancers. In particular, tubulin inhibition associated with ecDNA increases, suggesting a role for ecDNA in treatment response. In longitudinally matched tumor samples, ecDNAs were more likely to be retained compared to chromosomal amplifications. EcDNAs shared between time points, and ecDNAs in advanced cancers were more likely to harbor localized hypermutation events compared to private ecDNAs and ecDNAs in newly diagnosed tumors. Relatively high variant allele fractions of ecDNA localized hypermutations implicated early ecDNA mutagenesis. Our findings nominate ecDNAs to provide tumors with competitive advantages during cancer progression and metastasis. A pan-cancer genomic analysis finds an increase of extrachromosomal DNA (ecDNA) in treated and metastatic tumors compared to primary, untreated samples, as well as ecDNA features enriched in advanced disease.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution