在异构多核微控制器上加速基于图像的害虫检测

Luca Bompani;Luca Crupi;Daniele Palossi;Olmo Baldoni;Davide Brunelli;Francesco Conti;Manuele Rusci;Luca Benini
{"title":"在异构多核微控制器上加速基于图像的害虫检测","authors":"Luca Bompani;Luca Crupi;Daniele Palossi;Olmo Baldoni;Davide Brunelli;Francesco Conti;Manuele Rusci;Luca Benini","doi":"10.1109/TAFE.2024.3451888","DOIUrl":null,"url":null,"abstract":"The codling moth pest poses a significant threat to global crop production, with potential losses of up to 80% in apple orchards. Special camera-based sensor nodes are deployed in the field to record and transmit images of trapped insects to monitor the presence of the pest. This article investigates the embedding of computer vision algorithms in the sensor node using a novel state-of-the-art microcontroller unit (MCU), the GreenWaves Technologies' GAP9 system-on-chip, which combines 10 RISC-V general purposes cores with a convolution hardware accelerator. We compare the performance of a lightweight Viola–Jones detector algorithm with a convolutional neural network (CNN), MobileNetV3-SSDLite, trained for the pest detection task. On two datasets that differentiate for the distance between the camera sensor and the pest targets, the CNN generalizes better than the other method and achieves a detection accuracy between 83% and 72%. Thanks to the GAP9’s CNN accelerator, the CNN inference task takes only \n<inline-formula><tex-math>$\\text{147 ms}$</tex-math></inline-formula>\n to process a 320 × 240 pixel image. Compared to the GAP8 MCU, which only relies on general-purpose cores for processing, we achieved 9.5× faster inference speed. When running on a 1000 mAh battery at 3.7 V, the estimated lifetime is approximately 199 days, processing an image every 30 s. Our study demonstrates that the novel heterogeneous MCU can perform end-to-end CNN inference with an energy consumption of just 4.85 mJ, matching the efficiency of the simpler Viola–Jones algorithm and offering power consumption up to 15× lower than previous methods.","PeriodicalId":100637,"journal":{"name":"IEEE Transactions on AgriFood Electronics","volume":"2 2","pages":"170-180"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating Image-based Pest Detection on a Heterogeneous Multicore Microcontroller\",\"authors\":\"Luca Bompani;Luca Crupi;Daniele Palossi;Olmo Baldoni;Davide Brunelli;Francesco Conti;Manuele Rusci;Luca Benini\",\"doi\":\"10.1109/TAFE.2024.3451888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The codling moth pest poses a significant threat to global crop production, with potential losses of up to 80% in apple orchards. Special camera-based sensor nodes are deployed in the field to record and transmit images of trapped insects to monitor the presence of the pest. This article investigates the embedding of computer vision algorithms in the sensor node using a novel state-of-the-art microcontroller unit (MCU), the GreenWaves Technologies' GAP9 system-on-chip, which combines 10 RISC-V general purposes cores with a convolution hardware accelerator. We compare the performance of a lightweight Viola–Jones detector algorithm with a convolutional neural network (CNN), MobileNetV3-SSDLite, trained for the pest detection task. On two datasets that differentiate for the distance between the camera sensor and the pest targets, the CNN generalizes better than the other method and achieves a detection accuracy between 83% and 72%. Thanks to the GAP9’s CNN accelerator, the CNN inference task takes only \\n<inline-formula><tex-math>$\\\\text{147 ms}$</tex-math></inline-formula>\\n to process a 320 × 240 pixel image. Compared to the GAP8 MCU, which only relies on general-purpose cores for processing, we achieved 9.5× faster inference speed. When running on a 1000 mAh battery at 3.7 V, the estimated lifetime is approximately 199 days, processing an image every 30 s. Our study demonstrates that the novel heterogeneous MCU can perform end-to-end CNN inference with an energy consumption of just 4.85 mJ, matching the efficiency of the simpler Viola–Jones algorithm and offering power consumption up to 15× lower than previous methods.\",\"PeriodicalId\":100637,\"journal\":{\"name\":\"IEEE Transactions on AgriFood Electronics\",\"volume\":\"2 2\",\"pages\":\"170-180\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on AgriFood Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10693650/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on AgriFood Electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10693650/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

苹果蠹蛾对全球作物生产构成重大威胁,苹果园的潜在损失高达 80%。在田间部署的基于摄像头的特殊传感器节点可记录和传输被诱捕昆虫的图像,以监测害虫的存在。本文研究了在传感器节点中嵌入计算机视觉算法的问题,使用的是一种新型的先进微控制器(MCU),即 GreenWaves Technologies 公司的 GAP9 片上系统,它结合了 10 个 RISC-V 通用内核和一个卷积硬件加速器。我们比较了轻量级 Viola-Jones 检测器算法与针对害虫检测任务训练的卷积神经网络 (CNN)--MobileNetV3-SSDLite--的性能。在两个区分摄像头传感器与害虫目标之间距离的数据集上,卷积神经网络的泛化效果优于其他方法,检测准确率达到 83% 和 72%。得益于 GAP9 的 CNN 加速器,CNN 推理任务处理一幅 320 × 240 像素的图像仅需 $\text{147ms}$。与仅依靠通用内核进行处理的 GAP8 MCU 相比,我们的推理速度提高了 9.5 倍。我们的研究表明,新型异构 MCU 可以执行端到端的 CNN 推理,能耗仅为 4.85 mJ,与更简单的 Viola-Jones 算法的效率相当,功耗比以前的方法低 15 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerating Image-based Pest Detection on a Heterogeneous Multicore Microcontroller
The codling moth pest poses a significant threat to global crop production, with potential losses of up to 80% in apple orchards. Special camera-based sensor nodes are deployed in the field to record and transmit images of trapped insects to monitor the presence of the pest. This article investigates the embedding of computer vision algorithms in the sensor node using a novel state-of-the-art microcontroller unit (MCU), the GreenWaves Technologies' GAP9 system-on-chip, which combines 10 RISC-V general purposes cores with a convolution hardware accelerator. We compare the performance of a lightweight Viola–Jones detector algorithm with a convolutional neural network (CNN), MobileNetV3-SSDLite, trained for the pest detection task. On two datasets that differentiate for the distance between the camera sensor and the pest targets, the CNN generalizes better than the other method and achieves a detection accuracy between 83% and 72%. Thanks to the GAP9’s CNN accelerator, the CNN inference task takes only $\text{147 ms}$ to process a 320 × 240 pixel image. Compared to the GAP8 MCU, which only relies on general-purpose cores for processing, we achieved 9.5× faster inference speed. When running on a 1000 mAh battery at 3.7 V, the estimated lifetime is approximately 199 days, processing an image every 30 s. Our study demonstrates that the novel heterogeneous MCU can perform end-to-end CNN inference with an energy consumption of just 4.85 mJ, matching the efficiency of the simpler Viola–Jones algorithm and offering power consumption up to 15× lower than previous methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Transactions on AgriFood Electronics Vol. 2 Table of Contents Front Cover IEEE Circuits and Systems Society Information IEEE Circuits and Systems Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1