提高测温精度:通过在 Ba2GdV3O11:Tm3+/Yb3+ 纳米荧光粉中添加铒掺杂剂调节最大灵敏度温度†。

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Advances Pub Date : 2024-10-03 DOI:10.1039/D4MA00699B
Ikhlas Kachou, Kamel Saidi, Christian Hernández-Álvarez, Mohamed Dammak and Inocencio R. Martín
{"title":"提高测温精度:通过在 Ba2GdV3O11:Tm3+/Yb3+ 纳米荧光粉中添加铒掺杂剂调节最大灵敏度温度†。","authors":"Ikhlas Kachou, Kamel Saidi, Christian Hernández-Álvarez, Mohamed Dammak and Inocencio R. Martín","doi":"10.1039/D4MA00699B","DOIUrl":null,"url":null,"abstract":"<p >Developing luminescence sensors often prioritizes maximizing relative sensitivity to achieve optimal performance. However, a critical parameter often overlooked is the temperature at which maximum sensitivity occurs. In this study, we delve into this crucial aspect by exploring the impact of erbium doping in Tm<small><sup>3+</sup></small>/Yb<small><sup>3+</sup></small> co-doped Ba<small><sub>2</sub></small>GdV<small><sub>3</sub></small>O<small><sub>11</sub></small> nano phosphors. The crystal structure, microscopic morphology, and luminescence mechanism of BGVO:Yb<small><sup>3+</sup></small>/Tm<small><sup>3+</sup></small> and Er<small><sup>3+</sup></small>/Tm<small><sup>3+</sup></small>/Yb<small><sup>3+</sup></small> up conversion nanoparticles, as well as the temperature sensing characteristics are investigated. Under 975 nm laser excitation, the BGVO:Yb<small><sup>3+</sup></small>/Tm<small><sup>3+</sup></small> and BGVO:Er<small><sup>3+</sup></small>/Tm<small><sup>3+</sup></small>/Yb<small><sup>3+</sup></small> nano phosphors exhibited strong blue and green upconversion luminescence, respectively. The luminescence intensity ratio (LIR) approach was used to analyze the temperature-dependent luminescence spectra in the 300–600 K temperature range. The thermometry strategies were based on thermally coupled energy levels (TCLs) and non-thermally coupled energy levels (NTCLs) of Er<small><sup>3+</sup></small> and Tm<small><sup>3+</sup></small> for temperature sensing performance. In the Tm<small><sup>3+</sup></small>/Yb<small><sup>3+</sup></small> codoped samples, the relative sensitivity typically peaks around 350 K, attributed to TCLs (1.7% K<small><sup>−1</sup></small>, 700 nm/800 nm) with generally lower relative sensitivity compared to non-TCLs (5.39% K<small><sup>−1</sup></small>, 700 nm/475 nm). However, non-TCL sensitivities in the 300–600 K range lack a clear maximum. In contrast, Er<small><sup>3+</sup></small>/Tm<small><sup>3+</sup></small>/Yb<small><sup>3+</sup></small> samples exhibit distinct maxima in non-TCL sensitivities within this temperature range (1.91% K<small><sup>−1</sup></small>, 700 nm/550 nm), offering precise temperature determination for specific applications. Our findings underscore the potential of erbium doping to modulate temperature sensitivity peaks, crucial for optimizing performance in tailored luminescence nanosensors and offering fresh concepts for investigating alternative superior optical temperature sensing nano materials.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00699b?page=search","citationCount":"0","resultStr":"{\"title\":\"Enhancing thermometric precision: modulating the temperature of maximum sensitivity via erbium dopant addition in Ba2GdV3O11:Tm3+/Yb3+ nano phosphors†\",\"authors\":\"Ikhlas Kachou, Kamel Saidi, Christian Hernández-Álvarez, Mohamed Dammak and Inocencio R. Martín\",\"doi\":\"10.1039/D4MA00699B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Developing luminescence sensors often prioritizes maximizing relative sensitivity to achieve optimal performance. However, a critical parameter often overlooked is the temperature at which maximum sensitivity occurs. In this study, we delve into this crucial aspect by exploring the impact of erbium doping in Tm<small><sup>3+</sup></small>/Yb<small><sup>3+</sup></small> co-doped Ba<small><sub>2</sub></small>GdV<small><sub>3</sub></small>O<small><sub>11</sub></small> nano phosphors. The crystal structure, microscopic morphology, and luminescence mechanism of BGVO:Yb<small><sup>3+</sup></small>/Tm<small><sup>3+</sup></small> and Er<small><sup>3+</sup></small>/Tm<small><sup>3+</sup></small>/Yb<small><sup>3+</sup></small> up conversion nanoparticles, as well as the temperature sensing characteristics are investigated. Under 975 nm laser excitation, the BGVO:Yb<small><sup>3+</sup></small>/Tm<small><sup>3+</sup></small> and BGVO:Er<small><sup>3+</sup></small>/Tm<small><sup>3+</sup></small>/Yb<small><sup>3+</sup></small> nano phosphors exhibited strong blue and green upconversion luminescence, respectively. The luminescence intensity ratio (LIR) approach was used to analyze the temperature-dependent luminescence spectra in the 300–600 K temperature range. The thermometry strategies were based on thermally coupled energy levels (TCLs) and non-thermally coupled energy levels (NTCLs) of Er<small><sup>3+</sup></small> and Tm<small><sup>3+</sup></small> for temperature sensing performance. In the Tm<small><sup>3+</sup></small>/Yb<small><sup>3+</sup></small> codoped samples, the relative sensitivity typically peaks around 350 K, attributed to TCLs (1.7% K<small><sup>−1</sup></small>, 700 nm/800 nm) with generally lower relative sensitivity compared to non-TCLs (5.39% K<small><sup>−1</sup></small>, 700 nm/475 nm). However, non-TCL sensitivities in the 300–600 K range lack a clear maximum. In contrast, Er<small><sup>3+</sup></small>/Tm<small><sup>3+</sup></small>/Yb<small><sup>3+</sup></small> samples exhibit distinct maxima in non-TCL sensitivities within this temperature range (1.91% K<small><sup>−1</sup></small>, 700 nm/550 nm), offering precise temperature determination for specific applications. Our findings underscore the potential of erbium doping to modulate temperature sensitivity peaks, crucial for optimizing performance in tailored luminescence nanosensors and offering fresh concepts for investigating alternative superior optical temperature sensing nano materials.</p>\",\"PeriodicalId\":18242,\"journal\":{\"name\":\"Materials Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00699b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00699b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00699b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发发光传感器通常优先考虑最大限度地提高相对灵敏度,以实现最佳性能。然而,一个经常被忽视的关键参数是产生最大灵敏度的温度。在本研究中,我们通过探讨 Tm3+/Yb3+ 共掺杂 Ba2GdV3O11 纳米荧光粉中掺杂铒的影响,深入研究了这一关键方面。研究了 BGVO:Yb3+/Tm3+ 和 Er3+/Tm3+/Yb3+ 上转换纳米粒子的晶体结构、微观形貌、发光机理以及温度传感特性。在 975 nm 激光激发下,BGVO:Yb3+/Tm3+ 和 BGVO:Er3+/Tm3+/Yb3+ 纳米荧光粉分别表现出强烈的蓝色和绿色上转换发光。利用发光强度比(LIR)方法分析了 300-600 K 温度范围内随温度变化的发光光谱。测温策略基于 Er3+ 和 Tm3+ 的热耦合能级(TCL)和非热耦合能级(NTCL)来实现温度传感性能。在 Tm3+/Yb3+ 共掺样品中,相对灵敏度通常在 350 K 左右达到峰值,这归因于 TCL(1.7% K-1,700 nm/800 nm),与非 TCL(5.39% K-1,700 nm/475 nm)相比,相对灵敏度普遍较低。然而,300-600 K 范围内的非 TCL 灵敏度缺乏明显的最大值。相比之下,Er3+/Tm3+/Yb3+ 样品在该温度范围内的非TCL 灵敏度表现出明显的最大值(1.91% K-1,700 纳米/550 纳米),为特定应用提供了精确的温度测定。我们的研究结果强调了掺铒调制温度灵敏度峰值的潜力,这对优化定制发光纳米传感器的性能至关重要,并为研究替代性优异光学温度传感纳米材料提供了新的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing thermometric precision: modulating the temperature of maximum sensitivity via erbium dopant addition in Ba2GdV3O11:Tm3+/Yb3+ nano phosphors†

Developing luminescence sensors often prioritizes maximizing relative sensitivity to achieve optimal performance. However, a critical parameter often overlooked is the temperature at which maximum sensitivity occurs. In this study, we delve into this crucial aspect by exploring the impact of erbium doping in Tm3+/Yb3+ co-doped Ba2GdV3O11 nano phosphors. The crystal structure, microscopic morphology, and luminescence mechanism of BGVO:Yb3+/Tm3+ and Er3+/Tm3+/Yb3+ up conversion nanoparticles, as well as the temperature sensing characteristics are investigated. Under 975 nm laser excitation, the BGVO:Yb3+/Tm3+ and BGVO:Er3+/Tm3+/Yb3+ nano phosphors exhibited strong blue and green upconversion luminescence, respectively. The luminescence intensity ratio (LIR) approach was used to analyze the temperature-dependent luminescence spectra in the 300–600 K temperature range. The thermometry strategies were based on thermally coupled energy levels (TCLs) and non-thermally coupled energy levels (NTCLs) of Er3+ and Tm3+ for temperature sensing performance. In the Tm3+/Yb3+ codoped samples, the relative sensitivity typically peaks around 350 K, attributed to TCLs (1.7% K−1, 700 nm/800 nm) with generally lower relative sensitivity compared to non-TCLs (5.39% K−1, 700 nm/475 nm). However, non-TCL sensitivities in the 300–600 K range lack a clear maximum. In contrast, Er3+/Tm3+/Yb3+ samples exhibit distinct maxima in non-TCL sensitivities within this temperature range (1.91% K−1, 700 nm/550 nm), offering precise temperature determination for specific applications. Our findings underscore the potential of erbium doping to modulate temperature sensitivity peaks, crucial for optimizing performance in tailored luminescence nanosensors and offering fresh concepts for investigating alternative superior optical temperature sensing nano materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
期刊最新文献
Back cover Synthesis and magneto-dielectric properties of Ti-doped Ni0.5Zn0.5TixFe2−xO4 ferrite via a conventional sol–gel process Biocompatible and low-cost iodine-doped carbon dots as a bifunctional fluorescent and radiocontrast agent for X-ray CT imaging† Improved performance of a SWCNT/ZnO nanostructure-integrated silicon thin-film solar cell: role of annealing temperature Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1