利用浓缩太阳辐射下的柠檬汁作为可再生资源合成 2-芳基/异芳基取代的 2,3-二氢喹唑啉-4(1H)-酮的绿色化学方法†。

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY RSC Advances Pub Date : 2024-10-14 DOI:10.1039/D4RA05772D
Rehana A. Khan, Vishnu A. Adole, Thansing B. Pawar and Bapu S. Jagdale
{"title":"利用浓缩太阳辐射下的柠檬汁作为可再生资源合成 2-芳基/异芳基取代的 2,3-二氢喹唑啉-4(1H)-酮的绿色化学方法†。","authors":"Rehana A. Khan, Vishnu A. Adole, Thansing B. Pawar and Bapu S. Jagdale","doi":"10.1039/D4RA05772D","DOIUrl":null,"url":null,"abstract":"<p >This study explores a novel and eco-friendly synthesis of 22 derivatives of 2-aryl/heteroaryl substituted 2,3-dihydroquinazolin-4(1<em>H</em>)-ones, compounds with significant medicinal potential, using concentrated solar radiation (CSR) and lemon juice as a natural catalyst. Traditional methods for synthesizing these compounds often involve complex, energy-intensive processes and toxic reagents. In contrast, the method presented here utilizes solar energy and a biodegradable, non-toxic catalyst, aligning with the principles of green chemistry. The reaction, involving 2-aminobenzamide and various aromatic and heteroaromatic aldehydes, was optimized by varying temperature, catalyst concentration, and solvent. Through optimization, a combination of 0.3 mL of lemon juice and CSR achieved a 97% product yield in 10 minutes. A wide range of aromatic and heteroaromatic aldehydes were tested, all of which produced excellent yields, confirming the method's broad applicability. The substrate scope was explored with different aldehydes, containing groups/structures like chloro, bromo, nitro, methyl, methoxy, fluoro, hydroxy, imidazole, thiazole, chromone, pyrrole, and 1,4-dioxane, yielding up to 97%. Comparative studies with other catalysts and solvents confirmed the superior efficiency of lemon juice. This study not only demonstrates a sustainable approach to synthesizing 2,3-dihydroquinazolin-4(1<em>H</em>)-ones but also highlights the potential of solar energy in organic synthesis, offering a viable alternative to conventional methods. This environmentally benign method offers an efficient and sustainable route for synthesizing 2,3-dihydroquinazolin-4(1<em>H</em>)-one derivatives.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ra/d4ra05772d?page=search","citationCount":"0","resultStr":"{\"title\":\"Green chemistry approach to the synthesis of 2-aryl/heteroaryl substituted 2,3-dihydroquinazolin-4(1H)-ones using lemon juice under concentrated solar radiations as a renewable source†\",\"authors\":\"Rehana A. Khan, Vishnu A. Adole, Thansing B. Pawar and Bapu S. Jagdale\",\"doi\":\"10.1039/D4RA05772D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study explores a novel and eco-friendly synthesis of 22 derivatives of 2-aryl/heteroaryl substituted 2,3-dihydroquinazolin-4(1<em>H</em>)-ones, compounds with significant medicinal potential, using concentrated solar radiation (CSR) and lemon juice as a natural catalyst. Traditional methods for synthesizing these compounds often involve complex, energy-intensive processes and toxic reagents. In contrast, the method presented here utilizes solar energy and a biodegradable, non-toxic catalyst, aligning with the principles of green chemistry. The reaction, involving 2-aminobenzamide and various aromatic and heteroaromatic aldehydes, was optimized by varying temperature, catalyst concentration, and solvent. Through optimization, a combination of 0.3 mL of lemon juice and CSR achieved a 97% product yield in 10 minutes. A wide range of aromatic and heteroaromatic aldehydes were tested, all of which produced excellent yields, confirming the method's broad applicability. The substrate scope was explored with different aldehydes, containing groups/structures like chloro, bromo, nitro, methyl, methoxy, fluoro, hydroxy, imidazole, thiazole, chromone, pyrrole, and 1,4-dioxane, yielding up to 97%. Comparative studies with other catalysts and solvents confirmed the superior efficiency of lemon juice. This study not only demonstrates a sustainable approach to synthesizing 2,3-dihydroquinazolin-4(1<em>H</em>)-ones but also highlights the potential of solar energy in organic synthesis, offering a viable alternative to conventional methods. This environmentally benign method offers an efficient and sustainable route for synthesizing 2,3-dihydroquinazolin-4(1<em>H</em>)-one derivatives.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ra/d4ra05772d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra05772d\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra05772d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用集中太阳辐射(CSR)和柠檬汁作为天然催化剂,探索了一种新颖且环保的方法,合成了 22 种 2-芳基/异芳基取代的 2,3-二氢喹唑啉-4(1H)-酮衍生物,这些化合物具有显著的药用潜力。合成这些化合物的传统方法通常涉及复杂的高能耗过程和有毒试剂。相比之下,本文介绍的方法利用太阳能和一种可生物降解的无毒催化剂,符合绿色化学的原则。该反应涉及 2-氨基苯甲酰胺和各种芳香族和杂芳香族醛,通过改变温度、催化剂浓度和溶剂对反应进行了优化。通过优化,0.3 mL 柠檬汁和 CSR 的组合在 10 分钟内达到了 97% 的产品收率。测试了多种芳香族和杂芳香族醛,所有这些醛都产生了极好的产率,证实了该方法的广泛适用性。研究人员还利用不同的醛类底物,包括氯、溴、硝基、甲基、甲氧基、氟、羟基、咪唑、噻唑、铬酮、吡咯和 1,4-二氧六环等基团/结构,探索了该方法的底物范围,其产率高达 97%。与其他催化剂和溶剂的比较研究证实了柠檬汁的卓越效率。这项研究不仅展示了一种合成 2,3-二氢喹唑啉-4(1H)-酮的可持续方法,还凸显了太阳能在有机合成中的潜力,为传统方法提供了一种可行的替代方法。这种对环境无害的方法为合成 2,3-二氢喹唑啉-4(1H)-酮衍生物提供了一条高效且可持续的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Green chemistry approach to the synthesis of 2-aryl/heteroaryl substituted 2,3-dihydroquinazolin-4(1H)-ones using lemon juice under concentrated solar radiations as a renewable source†

This study explores a novel and eco-friendly synthesis of 22 derivatives of 2-aryl/heteroaryl substituted 2,3-dihydroquinazolin-4(1H)-ones, compounds with significant medicinal potential, using concentrated solar radiation (CSR) and lemon juice as a natural catalyst. Traditional methods for synthesizing these compounds often involve complex, energy-intensive processes and toxic reagents. In contrast, the method presented here utilizes solar energy and a biodegradable, non-toxic catalyst, aligning with the principles of green chemistry. The reaction, involving 2-aminobenzamide and various aromatic and heteroaromatic aldehydes, was optimized by varying temperature, catalyst concentration, and solvent. Through optimization, a combination of 0.3 mL of lemon juice and CSR achieved a 97% product yield in 10 minutes. A wide range of aromatic and heteroaromatic aldehydes were tested, all of which produced excellent yields, confirming the method's broad applicability. The substrate scope was explored with different aldehydes, containing groups/structures like chloro, bromo, nitro, methyl, methoxy, fluoro, hydroxy, imidazole, thiazole, chromone, pyrrole, and 1,4-dioxane, yielding up to 97%. Comparative studies with other catalysts and solvents confirmed the superior efficiency of lemon juice. This study not only demonstrates a sustainable approach to synthesizing 2,3-dihydroquinazolin-4(1H)-ones but also highlights the potential of solar energy in organic synthesis, offering a viable alternative to conventional methods. This environmentally benign method offers an efficient and sustainable route for synthesizing 2,3-dihydroquinazolin-4(1H)-one derivatives.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
期刊最新文献
Achieving lysozyme functionalization in PDADMAC–NaPSS saloplastics through salt annealing† Development, cross-validation and greenness assessment of capillary electrophoresis method for determination of ALP in pharmaceutical dosage forms – an alternative to liquid chromatography† Functionalizable poly-terthiophene/Cu2O heterojunction constructed in situ for sensitive photoelectrochemical detection of long non-coding RNA markers† Hyperbranched TEMPO-based polymers as catholytes for redox flow battery applications† Accurate and sensitive dual-response fluorescence detection of microRNAs based on an upconversion nanoamplicon with red emission
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1