{"title":"范德瓦耳斯工程促进量子纠缠光子的产生","authors":"Leevi Kallioniemi, Xiaodan Lyu, Ruihua He, Abdullah Rasmita, Ruihuan Duan, Zheng Liu, Weibo Gao","doi":"10.1038/s41566-024-01545-5","DOIUrl":null,"url":null,"abstract":"<p>Van der Waals engineering serves as a powerful tool to tailor material properties and design excitonic devices. Here we report quantum-entangled photon pair generation through van der Waals engineering with two-dimensional materials. We align two van der Waals thin layers perpendicular to each other, yielding polarization-entangled photon pairs through the interference of biphoton emission in the two flakes. The polarization-entangled state is measured with a fidelity up to 86 ± 0.7%. The compatibility of van der Waals engineering with on-chip photonics opens new possibilities for entangled photon source integration at the subwavelength scale.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"28 1","pages":""},"PeriodicalIF":51.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Van der Waals engineering for quantum-entangled photon generation\",\"authors\":\"Leevi Kallioniemi, Xiaodan Lyu, Ruihua He, Abdullah Rasmita, Ruihuan Duan, Zheng Liu, Weibo Gao\",\"doi\":\"10.1038/s41566-024-01545-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Van der Waals engineering serves as a powerful tool to tailor material properties and design excitonic devices. Here we report quantum-entangled photon pair generation through van der Waals engineering with two-dimensional materials. We align two van der Waals thin layers perpendicular to each other, yielding polarization-entangled photon pairs through the interference of biphoton emission in the two flakes. The polarization-entangled state is measured with a fidelity up to 86 ± 0.7%. The compatibility of van der Waals engineering with on-chip photonics opens new possibilities for entangled photon source integration at the subwavelength scale.</p>\",\"PeriodicalId\":32,\"journal\":{\"name\":\"Chemical Reviews\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":51.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41566-024-01545-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-024-01545-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Van der Waals engineering for quantum-entangled photon generation
Van der Waals engineering serves as a powerful tool to tailor material properties and design excitonic devices. Here we report quantum-entangled photon pair generation through van der Waals engineering with two-dimensional materials. We align two van der Waals thin layers perpendicular to each other, yielding polarization-entangled photon pairs through the interference of biphoton emission in the two flakes. The polarization-entangled state is measured with a fidelity up to 86 ± 0.7%. The compatibility of van der Waals engineering with on-chip photonics opens new possibilities for entangled photon source integration at the subwavelength scale.
期刊介绍:
Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry.
Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.