成分/磁场诱导的八面体倾斜、畴切换和 BF-BT 陶瓷的压电特性改善(跨相变

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2024-10-14 DOI:10.1039/d4ta03949a
Jinyu Chen, Chao Chen, Chong Zhao, na tu, Yunjing Chen, Nie Xin, Xiaokun Huang, Junming Liu, Xiangping Jiang
{"title":"成分/磁场诱导的八面体倾斜、畴切换和 BF-BT 陶瓷的压电特性改善(跨相变","authors":"Jinyu Chen, Chao Chen, Chong Zhao, na tu, Yunjing Chen, Nie Xin, Xiaokun Huang, Junming Liu, Xiangping Jiang","doi":"10.1039/d4ta03949a","DOIUrl":null,"url":null,"abstract":"To clarify the structural mechanism of high piezoelectric activity of (1-x)BiFeO3-xBaTiO3 ((1-x)BF-xBT) solid solution, the evolution of phase structure and domain configuration and their effects on piezoelectric properties were studied in a wide range of components (0.2 ≤ x ≤ 0.9). XRD refinement results show that with the introduction of BT, the phase structure gradually transforms from rhombohedral (R) to rhombohedral/pseudocubic (R/pC) coexistence and finally to pC, accompanied by the weakening of lattice distortion. The freezing temperature (Tf) of (1-x)BF-xBT decreases with the increment of BT around the morphotropic phase boundary (MPB) (0.3 ≤ x ≤ 0.5). This indicates that the domain structure changes from ferroelectric ordered domains to nanodomains (or polar nanoregions), corresponding to the enhancement of the relaxation state. High piezoelectric properties in 0.7BF-0.3BT are attributed to the unique heterogeneous domain structure and superior domain switching at MPB. The large strain is achieved in 0.6BF-0.4BT, which results from the mutual transformation between relaxor nanodomains and ferroelectric ordered domains.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The composition / field-induced octahedral tilt, domain switch and improved piezoelectric properties in BF-BT ceramics across phase transition\",\"authors\":\"Jinyu Chen, Chao Chen, Chong Zhao, na tu, Yunjing Chen, Nie Xin, Xiaokun Huang, Junming Liu, Xiangping Jiang\",\"doi\":\"10.1039/d4ta03949a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To clarify the structural mechanism of high piezoelectric activity of (1-x)BiFeO3-xBaTiO3 ((1-x)BF-xBT) solid solution, the evolution of phase structure and domain configuration and their effects on piezoelectric properties were studied in a wide range of components (0.2 ≤ x ≤ 0.9). XRD refinement results show that with the introduction of BT, the phase structure gradually transforms from rhombohedral (R) to rhombohedral/pseudocubic (R/pC) coexistence and finally to pC, accompanied by the weakening of lattice distortion. The freezing temperature (Tf) of (1-x)BF-xBT decreases with the increment of BT around the morphotropic phase boundary (MPB) (0.3 ≤ x ≤ 0.5). This indicates that the domain structure changes from ferroelectric ordered domains to nanodomains (or polar nanoregions), corresponding to the enhancement of the relaxation state. High piezoelectric properties in 0.7BF-0.3BT are attributed to the unique heterogeneous domain structure and superior domain switching at MPB. The large strain is achieved in 0.6BF-0.4BT, which results from the mutual transformation between relaxor nanodomains and ferroelectric ordered domains.\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ta03949a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta03949a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

为阐明 (1-x)BiFeO3-xBaTiO3 ((1-x)BF-xBT) 固溶体高压电活性的结构机理,研究了其在宽组分范围(0.2 ≤ x ≤ 0.9)内相结构和畴构型的演变及其对压电特性的影响。XRD 精炼结果表明,随着 BT 的引入,相结构逐渐从斜方体(R)转变为斜方体/假立方体(R/pC)共存,最后转变为 pC,同时晶格畸变减弱。(1-x)BF-xBT 的凝固温度(Tf)随着各向形态相边界(MPB)附近 BT 的增加而降低(0.3 ≤ x ≤ 0.5)。这表明畴结构从铁电有序畴变为纳米畴(或极性纳米区域),与弛豫状态的增强相对应。0.7BF-0.3BT 的高压电特性归因于其独特的异质畴结构和 MPB 处卓越的畴切换。0.6BF-0.4BT 实现了大应变,这是弛豫纳米域和铁电有序域之间相互转化的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The composition / field-induced octahedral tilt, domain switch and improved piezoelectric properties in BF-BT ceramics across phase transition
To clarify the structural mechanism of high piezoelectric activity of (1-x)BiFeO3-xBaTiO3 ((1-x)BF-xBT) solid solution, the evolution of phase structure and domain configuration and their effects on piezoelectric properties were studied in a wide range of components (0.2 ≤ x ≤ 0.9). XRD refinement results show that with the introduction of BT, the phase structure gradually transforms from rhombohedral (R) to rhombohedral/pseudocubic (R/pC) coexistence and finally to pC, accompanied by the weakening of lattice distortion. The freezing temperature (Tf) of (1-x)BF-xBT decreases with the increment of BT around the morphotropic phase boundary (MPB) (0.3 ≤ x ≤ 0.5). This indicates that the domain structure changes from ferroelectric ordered domains to nanodomains (or polar nanoregions), corresponding to the enhancement of the relaxation state. High piezoelectric properties in 0.7BF-0.3BT are attributed to the unique heterogeneous domain structure and superior domain switching at MPB. The large strain is achieved in 0.6BF-0.4BT, which results from the mutual transformation between relaxor nanodomains and ferroelectric ordered domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
Increasing electron density through n-type semiconductor to accelerate hot electrons from plasmonic Au nanospheres for artificial photosynthesis and cross-coupling reactions Application and prospects of metal-organic frameworks in photocatalytic self-cleaning membranes for wastewater treatment Aqueous Synthesis of Lithium Superionic−Conducting Complex Hydride Solid Electrolytes A stable and flexible FP-RRAM with in-situ covalently constructed 3D dendrimer framework Electrochemical glucose-to-formic acid conversion coupled with alkaline hydrogen production over nanostructured CuCo2O4 catalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1