利用集合视觉模型进行螺栓松动评估,通过无目标透视适应自动定位和特征提取

IF 8.5 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer-Aided Civil and Infrastructure Engineering Pub Date : 2024-10-14 DOI:10.1111/mice.13355
Xiao Pan, T. Y. Yang
{"title":"利用集合视觉模型进行螺栓松动评估,通过无目标透视适应自动定位和特征提取","authors":"Xiao Pan, T. Y. Yang","doi":"10.1111/mice.13355","DOIUrl":null,"url":null,"abstract":"Bolt loosening assessment is crucial to identify early warnings of structural degradation and prevent catastrophic events. This paper proposes an automatic bolt loosening assessment methodology. First, a novel end‐to‐end ensemble vision model, Bolt‐FP‐Net, is proposed to reason the locations of bolts and their hexagonal feature patterns concurrently. Second, an adaptive target‐free perspective correction method is proposed to correct perspective distortion and enhance assessment accuracy. Finally, an iterative bolt loosening quantification is developed to estimate and refine the bolt loosening rotation. Experimental parametric studies indicated that the proposed Bolt‐FP‐Net can achieve excellent performance under different environmental conditions. Finally, a case study was conducted on steel bolt connections, which shows the proposed methodology can achieve high accuracy and real‐time speed in bolt loosening assessment.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"16 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bolt loosening assessment using ensemble vision models for automatic localization and feature extraction with target‐free perspective adaptation\",\"authors\":\"Xiao Pan, T. Y. Yang\",\"doi\":\"10.1111/mice.13355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bolt loosening assessment is crucial to identify early warnings of structural degradation and prevent catastrophic events. This paper proposes an automatic bolt loosening assessment methodology. First, a novel end‐to‐end ensemble vision model, Bolt‐FP‐Net, is proposed to reason the locations of bolts and their hexagonal feature patterns concurrently. Second, an adaptive target‐free perspective correction method is proposed to correct perspective distortion and enhance assessment accuracy. Finally, an iterative bolt loosening quantification is developed to estimate and refine the bolt loosening rotation. Experimental parametric studies indicated that the proposed Bolt‐FP‐Net can achieve excellent performance under different environmental conditions. Finally, a case study was conducted on steel bolt connections, which shows the proposed methodology can achieve high accuracy and real‐time speed in bolt loosening assessment.\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/mice.13355\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13355","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

螺栓松动评估对于识别结构退化预警和预防灾难性事件至关重要。本文提出了一种自动螺栓松动评估方法。首先,提出了一种新颖的端到端集合视觉模型 Bolt-FP-Net,用于同时推理螺栓的位置及其六边形特征模式。其次,提出了一种自适应无目标透视校正方法,以纠正透视失真并提高评估精度。最后,开发了一种迭代螺栓松动量化方法,用于估算和改进螺栓松动旋转。实验参数研究表明,所提出的 Bolt-FP-Net 可在不同环境条件下实现出色的性能。最后,对钢制螺栓连接进行了案例研究,结果表明所提出的方法可以在螺栓松动评估中实现高精度和实时速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bolt loosening assessment using ensemble vision models for automatic localization and feature extraction with target‐free perspective adaptation
Bolt loosening assessment is crucial to identify early warnings of structural degradation and prevent catastrophic events. This paper proposes an automatic bolt loosening assessment methodology. First, a novel end‐to‐end ensemble vision model, Bolt‐FP‐Net, is proposed to reason the locations of bolts and their hexagonal feature patterns concurrently. Second, an adaptive target‐free perspective correction method is proposed to correct perspective distortion and enhance assessment accuracy. Finally, an iterative bolt loosening quantification is developed to estimate and refine the bolt loosening rotation. Experimental parametric studies indicated that the proposed Bolt‐FP‐Net can achieve excellent performance under different environmental conditions. Finally, a case study was conducted on steel bolt connections, which shows the proposed methodology can achieve high accuracy and real‐time speed in bolt loosening assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.60
自引率
19.80%
发文量
146
审稿时长
1 months
期刊介绍: Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms. Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.
期刊最新文献
Machine learning‐aided prediction of windstorm‐induced vibration responses of long‐span suspension bridges A bridge point cloud databank for digital bridge understanding Automated seismic event detection considering faulty data interference using deep learning and Bayesian fusion Smartphone-based high durable strain sensor with sub-pixel-level accuracy and adjustable camera position Reinforcement learning-based approach for urban road project scheduling considering alternative closure types
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1