以银为介生长用于选择性电化学二氧化碳还原的金/银/铜三元异质结构

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-10-14 DOI:10.1021/acsami.4c12952
Wenhao Xu, Taishi Xiao, Jie Chen, Junxiang Shu, Jili Li, Yao Ma, Xiang Li, Zihan Zhong, Zitao Zhang, Yefei Li, Qing Zhang, Zhengzong Sun, Yun Tang
{"title":"以银为介生长用于选择性电化学二氧化碳还原的金/银/铜三元异质结构","authors":"Wenhao Xu, Taishi Xiao, Jie Chen, Junxiang Shu, Jili Li, Yao Ma, Xiang Li, Zihan Zhong, Zitao Zhang, Yefei Li, Qing Zhang, Zhengzong Sun, Yun Tang","doi":"10.1021/acsami.4c12952","DOIUrl":null,"url":null,"abstract":"Copper (Cu)-based nanocatalysts play crucial roles in the electrochemical CO<sub>2</sub> reduction reaction (ECO<sub>2</sub>RR) for sustainable energy resources. Particularly, Cu-based nanostructures incorporating Au and Ag are promising, offering enhanced activity, selectivity, and stability. However, precise control over the structure and composition of heterostructures remains challenging, hindering the development of highly efficient catalysts. Herein, we present a silver (Ag) transition-layer-mediated approach to synthesize ternary heterostructures with two specific morphologies, namely, Au/Ag–Cu-side and Au/Ag–Cu-tip, which exhibit different Ag–Cu interface epitaxial patterns. The two heterostructures achieve high C2 product selectivity in ECO<sub>2</sub>RR. Especially, the Au/Ag–Cu-side structure achieves 50.3% C2 selectivity with 35.5% ethanol, while the tip structure shows higher ethylene selectivity. Our study reveals the impact of the Ag layer in directing deposition sites on heterostructure growth and further facilitating the design of multicomponent Cu-based catalysts with enhanced structural integrity and ECO<sub>2</sub>RR performance.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ag-Mediated Growth of Au/Ag–Cu Ternary Heterostructures for Selective Electrochemical CO2 Reduction\",\"authors\":\"Wenhao Xu, Taishi Xiao, Jie Chen, Junxiang Shu, Jili Li, Yao Ma, Xiang Li, Zihan Zhong, Zitao Zhang, Yefei Li, Qing Zhang, Zhengzong Sun, Yun Tang\",\"doi\":\"10.1021/acsami.4c12952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Copper (Cu)-based nanocatalysts play crucial roles in the electrochemical CO<sub>2</sub> reduction reaction (ECO<sub>2</sub>RR) for sustainable energy resources. Particularly, Cu-based nanostructures incorporating Au and Ag are promising, offering enhanced activity, selectivity, and stability. However, precise control over the structure and composition of heterostructures remains challenging, hindering the development of highly efficient catalysts. Herein, we present a silver (Ag) transition-layer-mediated approach to synthesize ternary heterostructures with two specific morphologies, namely, Au/Ag–Cu-side and Au/Ag–Cu-tip, which exhibit different Ag–Cu interface epitaxial patterns. The two heterostructures achieve high C2 product selectivity in ECO<sub>2</sub>RR. Especially, the Au/Ag–Cu-side structure achieves 50.3% C2 selectivity with 35.5% ethanol, while the tip structure shows higher ethylene selectivity. Our study reveals the impact of the Ag layer in directing deposition sites on heterostructure growth and further facilitating the design of multicomponent Cu-based catalysts with enhanced structural integrity and ECO<sub>2</sub>RR performance.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c12952\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c12952","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铜(Cu)基纳米催化剂在可持续能源的电化学二氧化碳还原反应(ECO2RR)中发挥着至关重要的作用。特别是含有金和银的铜基纳米结构,具有更高的活性、选择性和稳定性,前景十分广阔。然而,对异质结构的结构和组成进行精确控制仍然具有挑战性,阻碍了高效催化剂的开发。在此,我们提出了一种以银(Ag)过渡层为介导的方法,用于合成具有两种特定形态的三元异质结构,即 Au/Ag-Cu-side 和 Au/Ag-Cu-tip ,这两种异质结构表现出不同的 Ag-Cu 界面外延模式。这两种异质结构在 ECO2RR 中实现了较高的 C2 产物选择性。特别是,Au/Ag-Cu-side 结构对 35.5% 的乙醇实现了 50.3% 的 C2 选择性,而尖端结构则表现出更高的乙烯选择性。我们的研究揭示了引导沉积点的银层对异质结构生长的影响,进一步促进了结构完整性和 ECO2RR 性能更高的多组分铜基催化剂的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ag-Mediated Growth of Au/Ag–Cu Ternary Heterostructures for Selective Electrochemical CO2 Reduction
Copper (Cu)-based nanocatalysts play crucial roles in the electrochemical CO2 reduction reaction (ECO2RR) for sustainable energy resources. Particularly, Cu-based nanostructures incorporating Au and Ag are promising, offering enhanced activity, selectivity, and stability. However, precise control over the structure and composition of heterostructures remains challenging, hindering the development of highly efficient catalysts. Herein, we present a silver (Ag) transition-layer-mediated approach to synthesize ternary heterostructures with two specific morphologies, namely, Au/Ag–Cu-side and Au/Ag–Cu-tip, which exhibit different Ag–Cu interface epitaxial patterns. The two heterostructures achieve high C2 product selectivity in ECO2RR. Especially, the Au/Ag–Cu-side structure achieves 50.3% C2 selectivity with 35.5% ethanol, while the tip structure shows higher ethylene selectivity. Our study reveals the impact of the Ag layer in directing deposition sites on heterostructure growth and further facilitating the design of multicomponent Cu-based catalysts with enhanced structural integrity and ECO2RR performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
A Method of Efficiently Regenerating Waste LiFePO4 Cathode Material after Air Firing Treatment Preparation of Glutathione-Regulated Sorafenib Targeted Nanodrug Delivery System and Its Antihepatocellular Carcinoma Activity MnNi@PVP Nanoenzyme Based on Regulating Inflammation and Immune Homeostasis for the Therapy of Inflammatory Bowel Disease Memristor Array Based on Wafer-Scale 2D HfS2 for Dual-Mode Physically Unclonable Functions Bifunctional Luminescent Thermometer-Manometer Based on Cr3+–Cr3+ Pair Emission
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1