用于包晶有机串联太阳能电池的异构二铵钝化剂

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Pub Date : 2024-10-14 DOI:10.1038/s41586-024-08160-y
Xin Jiang, Shucheng Qin, Lei Meng, Guorui He, Jinyuan Zhang, Yiyang Wang, Yiqiao Zhu, Tianwei Zou, Yufei Gong, Zekun Chen, Guangpei Sun, Minchao Liu, Xiaojun Li, Felix Lang, Yongfang Li
{"title":"用于包晶有机串联太阳能电池的异构二铵钝化剂","authors":"Xin Jiang, Shucheng Qin, Lei Meng, Guorui He, Jinyuan Zhang, Yiyang Wang, Yiqiao Zhu, Tianwei Zou, Yufei Gong, Zekun Chen, Guangpei Sun, Minchao Liu, Xiaojun Li, Felix Lang, Yongfang Li","doi":"10.1038/s41586-024-08160-y","DOIUrl":null,"url":null,"abstract":"<p>In recent years, perovskite has been widely adopted in series-connected monolithic tandem solar cells (TSCs) to overcome the Shockley–Queisser limit of single-junction solar cells. Perovskite/organic TSCs, comprising a wide-bandgap (WBG) perovskite solar cell (pero-SC) as the front cell and a narrow-bandgap organic solar cell (OSC) as the rear cell, have recently drawn attention owing to the good stability and potential high power conversion efficiency (PCE)<sup>1,2,3,4</sup>. However, WBG pero-SCs usually exhibit higher voltage losses than regular pero-SCs, which limits the performance of TSCs<sup>5,6</sup>. One of the major obstacles comes from interfacial recombination at the perovskite/C<sub>60</sub> interface, and it is important to develop effective surface passivation strategies to pursue higher PCE of perovskite/organic TSCs<sup>7</sup>. Here we exploit a new surface passivator cyclohexane 1,4-diammonium diiodide (CyDAI<sub>2</sub>), which naturally contains two isomeric structures with ammonium groups on the same or opposite sides of the hexane ring (denoted as <i>cis</i>-CyDAI<sub>2</sub> and <i>trans</i>-CyDAI<sub>2</sub>, respectively), and the two isomers demonstrate completely different surface interaction behaviors. The <i>cis</i>-CyDAI<sub>2</sub> passivation treatment reduces the Quasi–Fermi level splitting (QFLS)–open circuit voltage (<i>V</i><sub>oc</sub>) mismatch of the WBG pero-SCs with a bandgap of 1.88 eV and enhanced its <i>V</i><sub>oc</sub> to 1.36 V. Combining the <i>cis</i>-CyDAI<sub>2</sub> treated perovskite and the organic active layer with a narrow-bandgap of 1.24 eV, the constructed monolithic perovskite/organic TSC demonstrates a PCE of 26.4% (certified as 25.7%).</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":null,"pages":null},"PeriodicalIF":50.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isomeric diammonium passivation for perovskite–organic tandem solar cells\",\"authors\":\"Xin Jiang, Shucheng Qin, Lei Meng, Guorui He, Jinyuan Zhang, Yiyang Wang, Yiqiao Zhu, Tianwei Zou, Yufei Gong, Zekun Chen, Guangpei Sun, Minchao Liu, Xiaojun Li, Felix Lang, Yongfang Li\",\"doi\":\"10.1038/s41586-024-08160-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, perovskite has been widely adopted in series-connected monolithic tandem solar cells (TSCs) to overcome the Shockley–Queisser limit of single-junction solar cells. Perovskite/organic TSCs, comprising a wide-bandgap (WBG) perovskite solar cell (pero-SC) as the front cell and a narrow-bandgap organic solar cell (OSC) as the rear cell, have recently drawn attention owing to the good stability and potential high power conversion efficiency (PCE)<sup>1,2,3,4</sup>. However, WBG pero-SCs usually exhibit higher voltage losses than regular pero-SCs, which limits the performance of TSCs<sup>5,6</sup>. One of the major obstacles comes from interfacial recombination at the perovskite/C<sub>60</sub> interface, and it is important to develop effective surface passivation strategies to pursue higher PCE of perovskite/organic TSCs<sup>7</sup>. Here we exploit a new surface passivator cyclohexane 1,4-diammonium diiodide (CyDAI<sub>2</sub>), which naturally contains two isomeric structures with ammonium groups on the same or opposite sides of the hexane ring (denoted as <i>cis</i>-CyDAI<sub>2</sub> and <i>trans</i>-CyDAI<sub>2</sub>, respectively), and the two isomers demonstrate completely different surface interaction behaviors. The <i>cis</i>-CyDAI<sub>2</sub> passivation treatment reduces the Quasi–Fermi level splitting (QFLS)–open circuit voltage (<i>V</i><sub>oc</sub>) mismatch of the WBG pero-SCs with a bandgap of 1.88 eV and enhanced its <i>V</i><sub>oc</sub> to 1.36 V. Combining the <i>cis</i>-CyDAI<sub>2</sub> treated perovskite and the organic active layer with a narrow-bandgap of 1.24 eV, the constructed monolithic perovskite/organic TSC demonstrates a PCE of 26.4% (certified as 25.7%).</p>\",\"PeriodicalId\":18787,\"journal\":{\"name\":\"Nature\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":50.5000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41586-024-08160-y\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-024-08160-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

近年来,为克服单结太阳能电池的肖克利-奎塞尔极限,串联单片串联太阳能电池(TSCs)中广泛采用了透辉石。最近,由宽带隙(WBG)磷灰石太阳能电池(pero-SC)作为前电池、窄带隙有机太阳能电池(OSC)作为后电池组成的磷灰石/有机串联太阳能电池因其良好的稳定性和潜在的高功率转换效率(PCE)1,2,3,4 而备受关注。然而,WBG 超薄膜太阳能电池的电压损耗通常高于普通超薄膜太阳能电池,从而限制了 TSC 的性能5,6。其中一个主要障碍来自于包晶石/C60 界面的界面重组,因此开发有效的表面钝化策略对于提高包晶石/有机 TSC 的 PCE 非常重要7。在这里,我们利用了一种新的表面钝化剂环己烷 1,4 二碘化铵(CyDAI2),它天然含有两种异构体结构,铵基团位于己烷环的同侧或异侧(分别称为顺式-CyDAI2 和反式-CyDAI2),这两种异构体表现出完全不同的表面相互作用行为。顺式-CyDAI2钝化处理降低了带隙为 1.88 eV 的 WBG pero-SC 的准费米级分裂(QFLS)-开路电压(Voc)失配,并将其 Voc 提高到 1.36 V。将顺式-CyDAI2 处理过的过氧化物与带隙为 1.24 eV 的窄带隙有机活性层相结合,构建的整体过氧化物/有机 TSC 的 PCE 为 26.4%(经认证为 25.7%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Isomeric diammonium passivation for perovskite–organic tandem solar cells

In recent years, perovskite has been widely adopted in series-connected monolithic tandem solar cells (TSCs) to overcome the Shockley–Queisser limit of single-junction solar cells. Perovskite/organic TSCs, comprising a wide-bandgap (WBG) perovskite solar cell (pero-SC) as the front cell and a narrow-bandgap organic solar cell (OSC) as the rear cell, have recently drawn attention owing to the good stability and potential high power conversion efficiency (PCE)1,2,3,4. However, WBG pero-SCs usually exhibit higher voltage losses than regular pero-SCs, which limits the performance of TSCs5,6. One of the major obstacles comes from interfacial recombination at the perovskite/C60 interface, and it is important to develop effective surface passivation strategies to pursue higher PCE of perovskite/organic TSCs7. Here we exploit a new surface passivator cyclohexane 1,4-diammonium diiodide (CyDAI2), which naturally contains two isomeric structures with ammonium groups on the same or opposite sides of the hexane ring (denoted as cis-CyDAI2 and trans-CyDAI2, respectively), and the two isomers demonstrate completely different surface interaction behaviors. The cis-CyDAI2 passivation treatment reduces the Quasi–Fermi level splitting (QFLS)–open circuit voltage (Voc) mismatch of the WBG pero-SCs with a bandgap of 1.88 eV and enhanced its Voc to 1.36 V. Combining the cis-CyDAI2 treated perovskite and the organic active layer with a narrow-bandgap of 1.24 eV, the constructed monolithic perovskite/organic TSC demonstrates a PCE of 26.4% (certified as 25.7%).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
期刊最新文献
The speed of smell is faster than expected The huge protein database that spawned AlphaFold and biology’s AI revolution China builds record-breaking magnet — but it comes with a cost How I created a film festival to explore climate communication How does the brain react to birth control? A researcher scanned herself 75 times to find out
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1