富集锶和镁可改善热处理生物活性玻璃的物理、机械和生物特性:生物医学应用的新线索

IF 44 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM The Lancet Diabetes & Endocrinology Pub Date : 2024-10-10 DOI:10.1016/j.ceramint.2024.10.135
Devis Bellucci, Alessia Mazzilli, Andrea Martelli, Francesco Gerardo Mecca, Susanna Bonacorsi, Francesco Demetrio Lofaro, Federica Boraldi, Daniela Quaglino, Valeria Cannillo
{"title":"富集锶和镁可改善热处理生物活性玻璃的物理、机械和生物特性:生物医学应用的新线索","authors":"Devis Bellucci, Alessia Mazzilli, Andrea Martelli, Francesco Gerardo Mecca, Susanna Bonacorsi, Francesco Demetrio Lofaro, Federica Boraldi, Daniela Quaglino, Valeria Cannillo","doi":"10.1016/j.ceramint.2024.10.135","DOIUrl":null,"url":null,"abstract":"Bioactive glasses (BGs) have emerged as invaluable resources for bone tissue engineering due to their remarkable properties such as bioactivity, resorbability, cell compatibility, and osteoconductivity. However, these materials exhibit certain limitations when subjected to high temperatures, for their tendency to crystallize, thus leading to diminished bioactivity, reduced mechanical strength, and altered dissolution kinetics. One promising approach to counteract this problem is to reduce the alkaline element content in BGs while simultaneously adding strontium and magnesium. Building on previous studies of Bio_MS, a recently developed experimental formulation, we investigated the contributions of strontium and magnesium to the thermal, mechanical, and biological properties of various bioactive glasses, including commercially available options. Differential thermal analysis, heating microscopy, X-ray diffractometry, environmental scanning electron microscopy, measurement of the Young’s modulus, simulated body fluid testing, cytotoxicity tests, cell viability, growth, adhesion and morphology were assessed through an integrated approach and compared for a complete evaluation of BGs, and of doped BGs, also undergoing thermal treatments. The results demonstrated improved thermal, mechanical and biological behaviors of the magnesium-strontium-doped BGs, thus paving the way for the development of BGs with enhanced biomedical perspectives.","PeriodicalId":48790,"journal":{"name":"The Lancet Diabetes & Endocrinology","volume":"33 1","pages":""},"PeriodicalIF":44.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enrichment of strontium and magnesium improves the physical, mechanical and biological properties of bioactive glasses undergoing thermal treatments: new cues for biomedical applications\",\"authors\":\"Devis Bellucci, Alessia Mazzilli, Andrea Martelli, Francesco Gerardo Mecca, Susanna Bonacorsi, Francesco Demetrio Lofaro, Federica Boraldi, Daniela Quaglino, Valeria Cannillo\",\"doi\":\"10.1016/j.ceramint.2024.10.135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bioactive glasses (BGs) have emerged as invaluable resources for bone tissue engineering due to their remarkable properties such as bioactivity, resorbability, cell compatibility, and osteoconductivity. However, these materials exhibit certain limitations when subjected to high temperatures, for their tendency to crystallize, thus leading to diminished bioactivity, reduced mechanical strength, and altered dissolution kinetics. One promising approach to counteract this problem is to reduce the alkaline element content in BGs while simultaneously adding strontium and magnesium. Building on previous studies of Bio_MS, a recently developed experimental formulation, we investigated the contributions of strontium and magnesium to the thermal, mechanical, and biological properties of various bioactive glasses, including commercially available options. Differential thermal analysis, heating microscopy, X-ray diffractometry, environmental scanning electron microscopy, measurement of the Young’s modulus, simulated body fluid testing, cytotoxicity tests, cell viability, growth, adhesion and morphology were assessed through an integrated approach and compared for a complete evaluation of BGs, and of doped BGs, also undergoing thermal treatments. The results demonstrated improved thermal, mechanical and biological behaviors of the magnesium-strontium-doped BGs, thus paving the way for the development of BGs with enhanced biomedical perspectives.\",\"PeriodicalId\":48790,\"journal\":{\"name\":\"The Lancet Diabetes & Endocrinology\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":44.0000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Lancet Diabetes & Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ceramint.2024.10.135\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Lancet Diabetes & Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ceramint.2024.10.135","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

生物活性玻璃(BGs)具有生物活性、可吸收性、细胞相容性和骨传导性等显著特性,已成为骨组织工程的宝贵资源。然而,这些材料在高温条件下会表现出一定的局限性,因为它们容易结晶,从而导致生物活性减弱、机械强度降低和溶解动力学改变。解决这一问题的一个可行方法是减少 BGs 中的碱性元素含量,同时添加锶和镁。在之前对最近开发的实验配方 Bio_MS 的研究基础上,我们研究了锶和镁对各种生物活性玻璃(包括市售选择)的热、机械和生物特性的贡献。我们采用综合方法对差热分析、加热显微镜、X 射线衍射仪、环境扫描电子显微镜、杨氏模量测量、模拟体液测试、细胞毒性测试、细胞活力、生长、粘附和形态进行了评估,并对生物活性玻璃和掺杂生物活性玻璃(同样经过热处理)进行了全面的评估比较。结果表明,掺镁锶的 BGs 在热学、机械和生物学行为方面都有所改进,从而为开发具有更好生物医学前景的 BGs 铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enrichment of strontium and magnesium improves the physical, mechanical and biological properties of bioactive glasses undergoing thermal treatments: new cues for biomedical applications
Bioactive glasses (BGs) have emerged as invaluable resources for bone tissue engineering due to their remarkable properties such as bioactivity, resorbability, cell compatibility, and osteoconductivity. However, these materials exhibit certain limitations when subjected to high temperatures, for their tendency to crystallize, thus leading to diminished bioactivity, reduced mechanical strength, and altered dissolution kinetics. One promising approach to counteract this problem is to reduce the alkaline element content in BGs while simultaneously adding strontium and magnesium. Building on previous studies of Bio_MS, a recently developed experimental formulation, we investigated the contributions of strontium and magnesium to the thermal, mechanical, and biological properties of various bioactive glasses, including commercially available options. Differential thermal analysis, heating microscopy, X-ray diffractometry, environmental scanning electron microscopy, measurement of the Young’s modulus, simulated body fluid testing, cytotoxicity tests, cell viability, growth, adhesion and morphology were assessed through an integrated approach and compared for a complete evaluation of BGs, and of doped BGs, also undergoing thermal treatments. The results demonstrated improved thermal, mechanical and biological behaviors of the magnesium-strontium-doped BGs, thus paving the way for the development of BGs with enhanced biomedical perspectives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Lancet Diabetes & Endocrinology
The Lancet Diabetes & Endocrinology ENDOCRINOLOGY & METABOLISM-
CiteScore
61.50
自引率
1.60%
发文量
371
期刊介绍: The Lancet Diabetes & Endocrinology, an independent journal with a global perspective and strong clinical focus, features original clinical research, expert reviews, news, and opinion pieces in each monthly issue. Covering topics like diabetes, obesity, nutrition, and more, the journal provides insights into clinical advances and practice-changing research worldwide. It welcomes original research advocating change or shedding light on clinical practice, as well as informative reviews on related topics, especially those with global health importance and relevance to low-income and middle-income countries. The journal publishes various content types, including Articles, Reviews, Comments, Correspondence, Health Policy, and Personal Views, along with Series and Commissions aiming to drive positive change in clinical practice and health policy in diabetes and endocrinology.
期刊最新文献
Overweight and obesity among Israeli adolescents and the risk for serious morbidity in early young adulthood: a nationwide retrospective cohort study Associations of obesity with co-morbidities in early adult life Putting wellbeing at the core of diabetes care Setmelanotide for the treatment of severe early-childhood genetic obesity Setmelanotide in patients aged 2–5 years with rare MC4R pathway-associated obesity (VENTURE): a 1 year, open-label, multicenter, phase 3 trial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1