{"title":"通过阳离子-π相互作用快速形成防污涂层","authors":"Zhicheng Huang , Kaijie Zhao , Shaoyin Wei , Yingxin Hao , Qina Yu , Jingcheng Hao , Jiwei Cui , Peiyu Zhang","doi":"10.1039/d4py00859f","DOIUrl":null,"url":null,"abstract":"<div><div>To decrease the adhesion of proteins, bacteria, and cells and increase the usage duration of implants, minimizing biofouling is crucial in medical industries. Traditionally, antifouling coatings are covalently bonded to substrates, a process that can be time-consuming or substrate-dependent. In this study, we synthesized both block and random copolymers using poly(ethylene glycol) methyl ether methacrylate (PEGMA) and methacryloxyethyltrimethyl ammonium chloride (METAC) through reversible addition–fragmentation chain transfer (RAFT) polymerization. These copolymers can be adsorbed onto metal-phenolic network (MPN)-modified substrates based on cation–π interactions, rapidly forming antifouling coatings in about 6 min. Due to the wide surface modification ability of MPNs, the antifouling coatings could form on various substrates. The antifouling coatings can effectively resist the adhesion of proteins, cells, and bacteria. Moreover, block copolymers exhibited superior antifouling abilities compared to random copolymers. Notably, the antifouling performance of copolymers can be promoted by increasing the amount of PEGMA and METAC. The advantage of the reported method is the rapid preparation of antifouling coatings on various substrates. In addition, the study provides an insight into the factors influencing the strength of cation–π interactions.</div></div>","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"15 43","pages":"Pages 4465-4473"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid formation of antifouling coatings via cation–π interactions†\",\"authors\":\"Zhicheng Huang , Kaijie Zhao , Shaoyin Wei , Yingxin Hao , Qina Yu , Jingcheng Hao , Jiwei Cui , Peiyu Zhang\",\"doi\":\"10.1039/d4py00859f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To decrease the adhesion of proteins, bacteria, and cells and increase the usage duration of implants, minimizing biofouling is crucial in medical industries. Traditionally, antifouling coatings are covalently bonded to substrates, a process that can be time-consuming or substrate-dependent. In this study, we synthesized both block and random copolymers using poly(ethylene glycol) methyl ether methacrylate (PEGMA) and methacryloxyethyltrimethyl ammonium chloride (METAC) through reversible addition–fragmentation chain transfer (RAFT) polymerization. These copolymers can be adsorbed onto metal-phenolic network (MPN)-modified substrates based on cation–π interactions, rapidly forming antifouling coatings in about 6 min. Due to the wide surface modification ability of MPNs, the antifouling coatings could form on various substrates. The antifouling coatings can effectively resist the adhesion of proteins, cells, and bacteria. Moreover, block copolymers exhibited superior antifouling abilities compared to random copolymers. Notably, the antifouling performance of copolymers can be promoted by increasing the amount of PEGMA and METAC. The advantage of the reported method is the rapid preparation of antifouling coatings on various substrates. In addition, the study provides an insight into the factors influencing the strength of cation–π interactions.</div></div>\",\"PeriodicalId\":100,\"journal\":{\"name\":\"Polymer Chemistry\",\"volume\":\"15 43\",\"pages\":\"Pages 4465-4473\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1759995424003747\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1759995424003747","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Rapid formation of antifouling coatings via cation–π interactions†
To decrease the adhesion of proteins, bacteria, and cells and increase the usage duration of implants, minimizing biofouling is crucial in medical industries. Traditionally, antifouling coatings are covalently bonded to substrates, a process that can be time-consuming or substrate-dependent. In this study, we synthesized both block and random copolymers using poly(ethylene glycol) methyl ether methacrylate (PEGMA) and methacryloxyethyltrimethyl ammonium chloride (METAC) through reversible addition–fragmentation chain transfer (RAFT) polymerization. These copolymers can be adsorbed onto metal-phenolic network (MPN)-modified substrates based on cation–π interactions, rapidly forming antifouling coatings in about 6 min. Due to the wide surface modification ability of MPNs, the antifouling coatings could form on various substrates. The antifouling coatings can effectively resist the adhesion of proteins, cells, and bacteria. Moreover, block copolymers exhibited superior antifouling abilities compared to random copolymers. Notably, the antifouling performance of copolymers can be promoted by increasing the amount of PEGMA and METAC. The advantage of the reported method is the rapid preparation of antifouling coatings on various substrates. In addition, the study provides an insight into the factors influencing the strength of cation–π interactions.
期刊介绍:
Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.