Prashanth Venkatesan , Preeti Pal , Siew Suan Ng , Jui-Yen Lin , Ruey-An Doong
{"title":"敏化三重-三重湮灭光子上转换:可持续能源和生物医学应用的组装策略和关键因素","authors":"Prashanth Venkatesan , Preeti Pal , Siew Suan Ng , Jui-Yen Lin , Ruey-An Doong","doi":"10.1016/j.ccr.2024.216266","DOIUrl":null,"url":null,"abstract":"<div><div>Sensitized Triplet-triplet annihilation (sTTA) photon upconversion (UC) represents a cutting-edge technology with far-reaching implications in both sustainable energy and biomedical realms. By capitalizing on the unique properties of excited triplet states, sTTA-UC enables the conversion of low-energy photons into higher-energy counterparts, offering promising solutions for efficient solar energy utilization and transformative biomedical applications. This review offers a comprehensive exploration of sTTA-UC, delving into its fundamental principles, assembly strategies, and key considerations for applications in sustainable energy and biomedicine. Various materials, including silica, clay, polymers, gels, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs), play integral roles in enhancing sTTA efficiency and overcoming challenges such as oxygen quenching. Additionally, the review surveys the diverse applications of sTTA-UC, in photocatalysis, solar energy conversion, biosensing, bioimaging, and therapeutic interventions. These applications underscore the versatility and potential of sTTA-UC across multifaceted domains, promising significant advancements in various scientific and technological fields. Looking towards the future, the review outlines key areas for further exploration and development in sTTA-UC research. Priorities include optimizing materials, enhancing stability, and exploring innovative integration approaches to fully harness the capabilities of sTTA-UC technology. By elucidating the opportunities and challenges inherent in sTTA-UC, this review seeks to inspire researchers to propel the field forward, driving innovation and sustainability in both energy and biomedical sectors.</div></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"523 ","pages":"Article 216266"},"PeriodicalIF":20.3000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitized triplet-triplet annihilation-based photon upconversion: Assembly strategy and key consideration for sustainable energy and biomedical applications\",\"authors\":\"Prashanth Venkatesan , Preeti Pal , Siew Suan Ng , Jui-Yen Lin , Ruey-An Doong\",\"doi\":\"10.1016/j.ccr.2024.216266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sensitized Triplet-triplet annihilation (sTTA) photon upconversion (UC) represents a cutting-edge technology with far-reaching implications in both sustainable energy and biomedical realms. By capitalizing on the unique properties of excited triplet states, sTTA-UC enables the conversion of low-energy photons into higher-energy counterparts, offering promising solutions for efficient solar energy utilization and transformative biomedical applications. This review offers a comprehensive exploration of sTTA-UC, delving into its fundamental principles, assembly strategies, and key considerations for applications in sustainable energy and biomedicine. Various materials, including silica, clay, polymers, gels, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs), play integral roles in enhancing sTTA efficiency and overcoming challenges such as oxygen quenching. Additionally, the review surveys the diverse applications of sTTA-UC, in photocatalysis, solar energy conversion, biosensing, bioimaging, and therapeutic interventions. These applications underscore the versatility and potential of sTTA-UC across multifaceted domains, promising significant advancements in various scientific and technological fields. Looking towards the future, the review outlines key areas for further exploration and development in sTTA-UC research. Priorities include optimizing materials, enhancing stability, and exploring innovative integration approaches to fully harness the capabilities of sTTA-UC technology. By elucidating the opportunities and challenges inherent in sTTA-UC, this review seeks to inspire researchers to propel the field forward, driving innovation and sustainability in both energy and biomedical sectors.</div></div>\",\"PeriodicalId\":289,\"journal\":{\"name\":\"Coordination Chemistry Reviews\",\"volume\":\"523 \",\"pages\":\"Article 216266\"},\"PeriodicalIF\":20.3000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coordination Chemistry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001085452400612X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001085452400612X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Sensitized triplet-triplet annihilation-based photon upconversion: Assembly strategy and key consideration for sustainable energy and biomedical applications
Sensitized Triplet-triplet annihilation (sTTA) photon upconversion (UC) represents a cutting-edge technology with far-reaching implications in both sustainable energy and biomedical realms. By capitalizing on the unique properties of excited triplet states, sTTA-UC enables the conversion of low-energy photons into higher-energy counterparts, offering promising solutions for efficient solar energy utilization and transformative biomedical applications. This review offers a comprehensive exploration of sTTA-UC, delving into its fundamental principles, assembly strategies, and key considerations for applications in sustainable energy and biomedicine. Various materials, including silica, clay, polymers, gels, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs), play integral roles in enhancing sTTA efficiency and overcoming challenges such as oxygen quenching. Additionally, the review surveys the diverse applications of sTTA-UC, in photocatalysis, solar energy conversion, biosensing, bioimaging, and therapeutic interventions. These applications underscore the versatility and potential of sTTA-UC across multifaceted domains, promising significant advancements in various scientific and technological fields. Looking towards the future, the review outlines key areas for further exploration and development in sTTA-UC research. Priorities include optimizing materials, enhancing stability, and exploring innovative integration approaches to fully harness the capabilities of sTTA-UC technology. By elucidating the opportunities and challenges inherent in sTTA-UC, this review seeks to inspire researchers to propel the field forward, driving innovation and sustainability in both energy and biomedical sectors.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.