含有富氧空位 WOx 的多功能水凝胶用于协同光催化氧气生产和光热疗法,促进细菌感染的糖尿病伤口愈合

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-10-14 DOI:10.1002/adfm.202411117
Xichen Sun, Pengfei Wang, Liuyan Tang, Ningning Li, Yan-Ru Lou, Yuezhou Zhang, Peng Li
{"title":"含有富氧空位 WOx 的多功能水凝胶用于协同光催化氧气生产和光热疗法,促进细菌感染的糖尿病伤口愈合","authors":"Xichen Sun, Pengfei Wang, Liuyan Tang, Ningning Li, Yan-Ru Lou, Yuezhou Zhang, Peng Li","doi":"10.1002/adfm.202411117","DOIUrl":null,"url":null,"abstract":"An effective method capable of simultaneously providing antibacterial activity, blood glucose regulation, and angiogenesis promotion for healing bacteria-infected diabetic wounds is not reported to date, but urgently required. In this study, a hydrogel composite (<i>γ</i>-PGA/PDA/GOx/WO<i><sub>x</sub></i> (PPGW)), endowed with these desired attributes is fabricated by incorporating polydopamine (PDA), glucose oxidase (GOx), and tungsten oxide (WO<i><sub>x</sub></i>) nanowires into the poly(<i>γ</i>-glutamic acid) (<i>γ</i>-PGA) framework. The exceptional photothermal conversion properties of PDA facilitated notable antibacterial effects on bacteria-infected diabetic wounds; GOx regulated high blood glucose by consuming glucose and generating hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>); while WO<i><sub>x</sub></i> nanowires displayed remarkable photocatalytic abilities, converting H<sub>2</sub>O<sub>2</sub> into oxygen (O<sub>2</sub>) when exposed to 808-nm near-infrared radiation. Density functional theory calculations and experiments are conducted to confirm the mechanism of WO<i><sub>x</sub></i>-mediated photocatalytic degradation of H<sub>2</sub>O<sub>2</sub> to produce O<sub>2</sub>. These transformations aided in alleviating the hypoxic conditions in wounds associated with diabetes, expediting angiogenesis, and fostering cell crawling and proliferation. Consequently, the multifunctional hydrogel dressing PPGW, featuring photothermal, antibacterial, and enzyme-catalyzed activity reduces hyperglycemia at the wound site. Moreover, photocatalytic O<sub>2</sub> production represents a promising strategy for addressing chronic bacteria-infected diabetic wounds.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional Hydrogel Containing Oxygen Vacancy-Rich WOx for Synergistic Photocatalytic O2 Production and Photothermal Therapy Promoting Bacteria-Infected Diabetic Wound Healing\",\"authors\":\"Xichen Sun, Pengfei Wang, Liuyan Tang, Ningning Li, Yan-Ru Lou, Yuezhou Zhang, Peng Li\",\"doi\":\"10.1002/adfm.202411117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An effective method capable of simultaneously providing antibacterial activity, blood glucose regulation, and angiogenesis promotion for healing bacteria-infected diabetic wounds is not reported to date, but urgently required. In this study, a hydrogel composite (<i>γ</i>-PGA/PDA/GOx/WO<i><sub>x</sub></i> (PPGW)), endowed with these desired attributes is fabricated by incorporating polydopamine (PDA), glucose oxidase (GOx), and tungsten oxide (WO<i><sub>x</sub></i>) nanowires into the poly(<i>γ</i>-glutamic acid) (<i>γ</i>-PGA) framework. The exceptional photothermal conversion properties of PDA facilitated notable antibacterial effects on bacteria-infected diabetic wounds; GOx regulated high blood glucose by consuming glucose and generating hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>); while WO<i><sub>x</sub></i> nanowires displayed remarkable photocatalytic abilities, converting H<sub>2</sub>O<sub>2</sub> into oxygen (O<sub>2</sub>) when exposed to 808-nm near-infrared radiation. Density functional theory calculations and experiments are conducted to confirm the mechanism of WO<i><sub>x</sub></i>-mediated photocatalytic degradation of H<sub>2</sub>O<sub>2</sub> to produce O<sub>2</sub>. These transformations aided in alleviating the hypoxic conditions in wounds associated with diabetes, expediting angiogenesis, and fostering cell crawling and proliferation. Consequently, the multifunctional hydrogel dressing PPGW, featuring photothermal, antibacterial, and enzyme-catalyzed activity reduces hyperglycemia at the wound site. Moreover, photocatalytic O<sub>2</sub> production represents a promising strategy for addressing chronic bacteria-infected diabetic wounds.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202411117\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202411117","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

迄今为止,还没有报道过一种能同时提供抗菌活性、调节血糖和促进血管生成的有效方法,用于愈合细菌感染的糖尿病伤口,但这种方法已迫在眉睫。在本研究中,通过将聚多巴胺(PDA)、葡萄糖氧化酶(GOx)和氧化钨(WOx)纳米线纳入聚γ-谷氨酸(γ-PGA)框架,制成了一种具有上述理想特性的水凝胶复合材料(γ-PGA/PDA/GOx/WOx (PPGW))。PDA 具有优异的光热转换特性,对细菌感染的糖尿病伤口具有显著的抗菌效果;GOx 通过消耗葡萄糖并产生过氧化氢(H2O2)来调节高血糖;而 WOx 纳米线则显示出卓越的光催化能力,在 808 纳米近红外辐射下可将 H2O2 转化为氧气(O2)。密度泛函理论计算和实验证实了 WOx 介导的光催化降解 H2O2 生成 O2 的机理。这些转化有助于缓解糖尿病相关伤口的缺氧状况,加快血管生成,促进细胞爬行和增殖。因此,具有光热、抗菌和酶催化活性的多功能水凝胶敷料 PPGW 可降低伤口处的高血糖。此外,光催化产生氧气是解决慢性细菌感染糖尿病伤口的一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multifunctional Hydrogel Containing Oxygen Vacancy-Rich WOx for Synergistic Photocatalytic O2 Production and Photothermal Therapy Promoting Bacteria-Infected Diabetic Wound Healing
An effective method capable of simultaneously providing antibacterial activity, blood glucose regulation, and angiogenesis promotion for healing bacteria-infected diabetic wounds is not reported to date, but urgently required. In this study, a hydrogel composite (γ-PGA/PDA/GOx/WOx (PPGW)), endowed with these desired attributes is fabricated by incorporating polydopamine (PDA), glucose oxidase (GOx), and tungsten oxide (WOx) nanowires into the poly(γ-glutamic acid) (γ-PGA) framework. The exceptional photothermal conversion properties of PDA facilitated notable antibacterial effects on bacteria-infected diabetic wounds; GOx regulated high blood glucose by consuming glucose and generating hydrogen peroxide (H2O2); while WOx nanowires displayed remarkable photocatalytic abilities, converting H2O2 into oxygen (O2) when exposed to 808-nm near-infrared radiation. Density functional theory calculations and experiments are conducted to confirm the mechanism of WOx-mediated photocatalytic degradation of H2O2 to produce O2. These transformations aided in alleviating the hypoxic conditions in wounds associated with diabetes, expediting angiogenesis, and fostering cell crawling and proliferation. Consequently, the multifunctional hydrogel dressing PPGW, featuring photothermal, antibacterial, and enzyme-catalyzed activity reduces hyperglycemia at the wound site. Moreover, photocatalytic O2 production represents a promising strategy for addressing chronic bacteria-infected diabetic wounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Silicone-Assisted Autonomous Growth of Strainless Perovskite Single Crystals for Integrated Low-Dose X-Ray Imaging Arrays MXene-Based Soft Actuators With Phototropic Self-Sustained Oscillation for Versatile Applications in Micro Robotics Understanding the Nonradiative Charge Recombination in Organic Photovoltaics: From Molecule to Device Boosting Tumor Apoptosis and Ferroptosis with Multienzyme Mimetic Au Single-Atom Nanozymes Engaged in Cascade Catalysis Br-Induced d-Band Regulation on Superhydrophilic Isostructural Cobalt Phosphide for Efficient Overall Water Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1