{"title":"在充电站点对点双竞价 V2V 电力交易中抵御选环攻击的隐私保护方案","authors":"Shaomin Zhang , Xu Wang , Baoyi Wang","doi":"10.1016/j.epsr.2024.111155","DOIUrl":null,"url":null,"abstract":"<div><div>With the development of Electric Vehicles (EVs), the number of public charging piles cannot meet the immediate charging needs of EV users sometimes. The charging stations provide flexible electricity transaction schemes for users by managing charging piles and Vehicle-to-Vehicle (V2V). Users can freely choose transaction partners and submit transaction plans to multiple charging stations. The mobility of EVs results in users randomly selecting rings multiple times, which may cause them to appear in different rings. Attackers can link multiple transaction plans and infer user privacy information. The leakage of transaction information may threaten the fairness of transactions. Aiming at the above situations, a privacy protection scheme to resist ring selection attack in Peer-to-Peer double auction V2V electricity transaction for charging stations is proposed. Firstly, the ring signcryption algorithm is improved to resist ring selection attack. Secondly, a real identity verification algorithm is designed to track malicious users. Theoretical analysis proves that the security of the proposed privacy protection scheme. The elliptic curve point multiplication is used in the scheme to improve computational efficiency. Experiments show that this scheme has low computational and communication costs. Verification cost increases slowly with the increase of the number of ring members.</div></div>","PeriodicalId":50547,"journal":{"name":"Electric Power Systems Research","volume":"238 ","pages":"Article 111155"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A privacy protection scheme to resist ring selection attack in peer-to-peer double auction V2V electricity transaction for charging stations\",\"authors\":\"Shaomin Zhang , Xu Wang , Baoyi Wang\",\"doi\":\"10.1016/j.epsr.2024.111155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the development of Electric Vehicles (EVs), the number of public charging piles cannot meet the immediate charging needs of EV users sometimes. The charging stations provide flexible electricity transaction schemes for users by managing charging piles and Vehicle-to-Vehicle (V2V). Users can freely choose transaction partners and submit transaction plans to multiple charging stations. The mobility of EVs results in users randomly selecting rings multiple times, which may cause them to appear in different rings. Attackers can link multiple transaction plans and infer user privacy information. The leakage of transaction information may threaten the fairness of transactions. Aiming at the above situations, a privacy protection scheme to resist ring selection attack in Peer-to-Peer double auction V2V electricity transaction for charging stations is proposed. Firstly, the ring signcryption algorithm is improved to resist ring selection attack. Secondly, a real identity verification algorithm is designed to track malicious users. Theoretical analysis proves that the security of the proposed privacy protection scheme. The elliptic curve point multiplication is used in the scheme to improve computational efficiency. Experiments show that this scheme has low computational and communication costs. Verification cost increases slowly with the increase of the number of ring members.</div></div>\",\"PeriodicalId\":50547,\"journal\":{\"name\":\"Electric Power Systems Research\",\"volume\":\"238 \",\"pages\":\"Article 111155\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electric Power Systems Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378779624010411\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electric Power Systems Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378779624010411","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A privacy protection scheme to resist ring selection attack in peer-to-peer double auction V2V electricity transaction for charging stations
With the development of Electric Vehicles (EVs), the number of public charging piles cannot meet the immediate charging needs of EV users sometimes. The charging stations provide flexible electricity transaction schemes for users by managing charging piles and Vehicle-to-Vehicle (V2V). Users can freely choose transaction partners and submit transaction plans to multiple charging stations. The mobility of EVs results in users randomly selecting rings multiple times, which may cause them to appear in different rings. Attackers can link multiple transaction plans and infer user privacy information. The leakage of transaction information may threaten the fairness of transactions. Aiming at the above situations, a privacy protection scheme to resist ring selection attack in Peer-to-Peer double auction V2V electricity transaction for charging stations is proposed. Firstly, the ring signcryption algorithm is improved to resist ring selection attack. Secondly, a real identity verification algorithm is designed to track malicious users. Theoretical analysis proves that the security of the proposed privacy protection scheme. The elliptic curve point multiplication is used in the scheme to improve computational efficiency. Experiments show that this scheme has low computational and communication costs. Verification cost increases slowly with the increase of the number of ring members.
期刊介绍:
Electric Power Systems Research is an international medium for the publication of original papers concerned with the generation, transmission, distribution and utilization of electrical energy. The journal aims at presenting important results of work in this field, whether in the form of applied research, development of new procedures or components, orginal application of existing knowledge or new designapproaches. The scope of Electric Power Systems Research is broad, encompassing all aspects of electric power systems. The following list of topics is not intended to be exhaustive, but rather to indicate topics that fall within the journal purview.
• Generation techniques ranging from advances in conventional electromechanical methods, through nuclear power generation, to renewable energy generation.
• Transmission, spanning the broad area from UHV (ac and dc) to network operation and protection, line routing and design.
• Substation work: equipment design, protection and control systems.
• Distribution techniques, equipment development, and smart grids.
• The utilization area from energy efficiency to distributed load levelling techniques.
• Systems studies including control techniques, planning, optimization methods, stability, security assessment and insulation coordination.