{"title":"基于数据驱动的自适应 Lyapunov 函数图形深度卷积神经网络用于智能电网拥塞管理","authors":"J Christy , Pandia Rajan Jeyaraj","doi":"10.1016/j.epsr.2024.111163","DOIUrl":null,"url":null,"abstract":"<div><div>Optimal power flow by leveraging network grid topology will ensure stable operation of the smart grid. Energy management in grid-connected systems aimed to reduce computational non-linearities and ensure reliable operation of the smart grid. The conventional method manages congestion with optimal scheduling for every 10–15 min. Hence congestion in the smart grid occurs during secured energy distribution. In smart grid, instant congestion and energy management are needed. This research, work is devoted to a novel data-driven adaptive Lyapunov function with a Graphical Deep Convolutional Neural Network (GDCNN) regulated optimal flow by accurate energy management. By employing novel Graph theory-based network, the congestion data are obtained to train the proposed GDCNN. A Comparison of obtained results with existing baseline methods has been carried for claiming the novelties of proposed GDCNN. It is observed, that compared to existing machine learning-based extended subspace identification techniques. Our method has better optimal power regulation within 1.8 s by controlling power sources. Also, numerical simulation on IEEE 68 bus system shows the proposed GDCNN have superior performance, reliability, and optimal energy management. This by integrating the benefits of adaptive Lyapunov function and graphical convolutional network.</div></div>","PeriodicalId":50547,"journal":{"name":"Electric Power Systems Research","volume":"238 ","pages":"Article 111163"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven adaptive Lyapunov function based graphical deep convolutional neural network for smart grid congestion management\",\"authors\":\"J Christy , Pandia Rajan Jeyaraj\",\"doi\":\"10.1016/j.epsr.2024.111163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Optimal power flow by leveraging network grid topology will ensure stable operation of the smart grid. Energy management in grid-connected systems aimed to reduce computational non-linearities and ensure reliable operation of the smart grid. The conventional method manages congestion with optimal scheduling for every 10–15 min. Hence congestion in the smart grid occurs during secured energy distribution. In smart grid, instant congestion and energy management are needed. This research, work is devoted to a novel data-driven adaptive Lyapunov function with a Graphical Deep Convolutional Neural Network (GDCNN) regulated optimal flow by accurate energy management. By employing novel Graph theory-based network, the congestion data are obtained to train the proposed GDCNN. A Comparison of obtained results with existing baseline methods has been carried for claiming the novelties of proposed GDCNN. It is observed, that compared to existing machine learning-based extended subspace identification techniques. Our method has better optimal power regulation within 1.8 s by controlling power sources. Also, numerical simulation on IEEE 68 bus system shows the proposed GDCNN have superior performance, reliability, and optimal energy management. This by integrating the benefits of adaptive Lyapunov function and graphical convolutional network.</div></div>\",\"PeriodicalId\":50547,\"journal\":{\"name\":\"Electric Power Systems Research\",\"volume\":\"238 \",\"pages\":\"Article 111163\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electric Power Systems Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378779624010496\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electric Power Systems Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378779624010496","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Data-driven adaptive Lyapunov function based graphical deep convolutional neural network for smart grid congestion management
Optimal power flow by leveraging network grid topology will ensure stable operation of the smart grid. Energy management in grid-connected systems aimed to reduce computational non-linearities and ensure reliable operation of the smart grid. The conventional method manages congestion with optimal scheduling for every 10–15 min. Hence congestion in the smart grid occurs during secured energy distribution. In smart grid, instant congestion and energy management are needed. This research, work is devoted to a novel data-driven adaptive Lyapunov function with a Graphical Deep Convolutional Neural Network (GDCNN) regulated optimal flow by accurate energy management. By employing novel Graph theory-based network, the congestion data are obtained to train the proposed GDCNN. A Comparison of obtained results with existing baseline methods has been carried for claiming the novelties of proposed GDCNN. It is observed, that compared to existing machine learning-based extended subspace identification techniques. Our method has better optimal power regulation within 1.8 s by controlling power sources. Also, numerical simulation on IEEE 68 bus system shows the proposed GDCNN have superior performance, reliability, and optimal energy management. This by integrating the benefits of adaptive Lyapunov function and graphical convolutional network.
期刊介绍:
Electric Power Systems Research is an international medium for the publication of original papers concerned with the generation, transmission, distribution and utilization of electrical energy. The journal aims at presenting important results of work in this field, whether in the form of applied research, development of new procedures or components, orginal application of existing knowledge or new designapproaches. The scope of Electric Power Systems Research is broad, encompassing all aspects of electric power systems. The following list of topics is not intended to be exhaustive, but rather to indicate topics that fall within the journal purview.
• Generation techniques ranging from advances in conventional electromechanical methods, through nuclear power generation, to renewable energy generation.
• Transmission, spanning the broad area from UHV (ac and dc) to network operation and protection, line routing and design.
• Substation work: equipment design, protection and control systems.
• Distribution techniques, equipment development, and smart grids.
• The utilization area from energy efficiency to distributed load levelling techniques.
• Systems studies including control techniques, planning, optimization methods, stability, security assessment and insulation coordination.