Bao Wang , Kejia Pan , Shuai Gao , Shixing Wu , Chao Zhao , Xuan Luo , Qi Peng , Minghan Sun , Dongdong Li , Ning Li , Yuanyuan Li
{"title":"CIP 过程中不规则钛粉末的协同致密化机制:使用真实形状颗粒的 3D MPFEM 仿真","authors":"Bao Wang , Kejia Pan , Shuai Gao , Shixing Wu , Chao Zhao , Xuan Luo , Qi Peng , Minghan Sun , Dongdong Li , Ning Li , Yuanyuan Li","doi":"10.1016/j.matdes.2024.113368","DOIUrl":null,"url":null,"abstract":"<div><div>Achieving high green density is essential for ensuring the mechanical properties of powder metallurgy workpieces. However, the densification behavior of irregular ductile powders remains unclear due to oversimplification in current numerical simulations. To address this, a three-dimensional multi-particle finite element method model incorporating realistic powder morphology, size distribution, and stacking structure is constructed. It is found that a pivotal motion-deformation synergistic stage exists between the conventional particle rearrangement and elastic–plastic deformation stages. In this stage, plastic deformation is driven by the spheroidization of coarse powders, whereas the resulting vacancies in the stacking structure facilitate slight particle motion. Thereafter, plastic deformation is dominated by the flattening of fine particles, and the pore-filling capacity decreases due to the reduction in non-contact surface area. This synergistic and complementary interaction between the spheroidization of coarse powders and the flattening of fine powders enhances mechanical interlocking and promotes micropore closure. As a result, the micropores exhibit a tendency of downsizing and homogenization, substantially boosting the potential for achieving full densification during sintering. Based on these findings, a method for determining the optimal forming pressure is proposed, considering the manufacturing costs of powder compacts and the characteristics of the micropores in both green and sintered bodies.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"246 ","pages":"Article 113368"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic densification mechanism of irregular Ti powder during CIP: 3D MPFEM simulation with real-shape particles\",\"authors\":\"Bao Wang , Kejia Pan , Shuai Gao , Shixing Wu , Chao Zhao , Xuan Luo , Qi Peng , Minghan Sun , Dongdong Li , Ning Li , Yuanyuan Li\",\"doi\":\"10.1016/j.matdes.2024.113368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Achieving high green density is essential for ensuring the mechanical properties of powder metallurgy workpieces. However, the densification behavior of irregular ductile powders remains unclear due to oversimplification in current numerical simulations. To address this, a three-dimensional multi-particle finite element method model incorporating realistic powder morphology, size distribution, and stacking structure is constructed. It is found that a pivotal motion-deformation synergistic stage exists between the conventional particle rearrangement and elastic–plastic deformation stages. In this stage, plastic deformation is driven by the spheroidization of coarse powders, whereas the resulting vacancies in the stacking structure facilitate slight particle motion. Thereafter, plastic deformation is dominated by the flattening of fine particles, and the pore-filling capacity decreases due to the reduction in non-contact surface area. This synergistic and complementary interaction between the spheroidization of coarse powders and the flattening of fine powders enhances mechanical interlocking and promotes micropore closure. As a result, the micropores exhibit a tendency of downsizing and homogenization, substantially boosting the potential for achieving full densification during sintering. Based on these findings, a method for determining the optimal forming pressure is proposed, considering the manufacturing costs of powder compacts and the characteristics of the micropores in both green and sintered bodies.</div></div>\",\"PeriodicalId\":383,\"journal\":{\"name\":\"Materials & Design\",\"volume\":\"246 \",\"pages\":\"Article 113368\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials & Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0264127524007433\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524007433","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Synergistic densification mechanism of irregular Ti powder during CIP: 3D MPFEM simulation with real-shape particles
Achieving high green density is essential for ensuring the mechanical properties of powder metallurgy workpieces. However, the densification behavior of irregular ductile powders remains unclear due to oversimplification in current numerical simulations. To address this, a three-dimensional multi-particle finite element method model incorporating realistic powder morphology, size distribution, and stacking structure is constructed. It is found that a pivotal motion-deformation synergistic stage exists between the conventional particle rearrangement and elastic–plastic deformation stages. In this stage, plastic deformation is driven by the spheroidization of coarse powders, whereas the resulting vacancies in the stacking structure facilitate slight particle motion. Thereafter, plastic deformation is dominated by the flattening of fine particles, and the pore-filling capacity decreases due to the reduction in non-contact surface area. This synergistic and complementary interaction between the spheroidization of coarse powders and the flattening of fine powders enhances mechanical interlocking and promotes micropore closure. As a result, the micropores exhibit a tendency of downsizing and homogenization, substantially boosting the potential for achieving full densification during sintering. Based on these findings, a method for determining the optimal forming pressure is proposed, considering the manufacturing costs of powder compacts and the characteristics of the micropores in both green and sintered bodies.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.