Danish Ansari , Wasim Raza , Ji Hwan Jeong , Kwang-Yong Kim
{"title":"用于缓解极端热点的新型混合复合微通道散热器","authors":"Danish Ansari , Wasim Raza , Ji Hwan Jeong , Kwang-Yong Kim","doi":"10.1016/j.ijthermalsci.2024.109473","DOIUrl":null,"url":null,"abstract":"<div><div>Most of the heat generated by a microprocessor comes from its cores, resulting in hotspots with exceptionally high heat flux. In contrast, the remaining processor area experiences significantly lower heat flux, leading to substantial temperature nonuniformity across the chip. An efficient heat sink must be capable of applying distinct cooling capacities specific to each zone. This study presents an energy-efficient heat sink design aimed at mitigating severe temperature variations in microprocessors. The design concept involves dividing the processor's hot surface into zones based on heat flux intensity and integrating different microstructures and materials into each respective zone for optimized thermal management. The proposed hybrid-composite design was developed by incorporating silicon microchannels for the low-heat-flux zone and diamond microfins for the high-heat-flux zone. Integrating microfins (hybrid design) substantially enhances the solid-fluid interface area over the hotspot zone, while using diamond (composite design) dramatically improves heat conduction from the hotspot. Full heat sinks were modeled for conjugate heat transfer investigation. The thermo-hydraulic performance of hybrid-composite design was compared against that of simple, simple-composite, and hybrid designs. The hybrid-composite design demonstrated substantial enhancement in thermal performance compared to all the other designs, with a moderate rise in pumping power. In comparison to the simple microchannel design, the hybrid-composite design demonstrated a 66.0 % reduction in thermal resistance and a 74.3 % decrease in temperature nonuniformity. Additionally, the hybrid-composite design could effectively mitigate a hotspot heat flux of up to 2400 W/cm<sup>2</sup> with only 8.6 % higher pumping power, while the simple microchannel design reached the maximum permissible temperature limit at 700 W/cm<sup>2</sup>.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"208 ","pages":"Article 109473"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel hybrid-composite microchannel heat sink for extreme hotspot mitigation\",\"authors\":\"Danish Ansari , Wasim Raza , Ji Hwan Jeong , Kwang-Yong Kim\",\"doi\":\"10.1016/j.ijthermalsci.2024.109473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Most of the heat generated by a microprocessor comes from its cores, resulting in hotspots with exceptionally high heat flux. In contrast, the remaining processor area experiences significantly lower heat flux, leading to substantial temperature nonuniformity across the chip. An efficient heat sink must be capable of applying distinct cooling capacities specific to each zone. This study presents an energy-efficient heat sink design aimed at mitigating severe temperature variations in microprocessors. The design concept involves dividing the processor's hot surface into zones based on heat flux intensity and integrating different microstructures and materials into each respective zone for optimized thermal management. The proposed hybrid-composite design was developed by incorporating silicon microchannels for the low-heat-flux zone and diamond microfins for the high-heat-flux zone. Integrating microfins (hybrid design) substantially enhances the solid-fluid interface area over the hotspot zone, while using diamond (composite design) dramatically improves heat conduction from the hotspot. Full heat sinks were modeled for conjugate heat transfer investigation. The thermo-hydraulic performance of hybrid-composite design was compared against that of simple, simple-composite, and hybrid designs. The hybrid-composite design demonstrated substantial enhancement in thermal performance compared to all the other designs, with a moderate rise in pumping power. In comparison to the simple microchannel design, the hybrid-composite design demonstrated a 66.0 % reduction in thermal resistance and a 74.3 % decrease in temperature nonuniformity. Additionally, the hybrid-composite design could effectively mitigate a hotspot heat flux of up to 2400 W/cm<sup>2</sup> with only 8.6 % higher pumping power, while the simple microchannel design reached the maximum permissible temperature limit at 700 W/cm<sup>2</sup>.</div></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":\"208 \",\"pages\":\"Article 109473\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1290072924005957\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924005957","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A novel hybrid-composite microchannel heat sink for extreme hotspot mitigation
Most of the heat generated by a microprocessor comes from its cores, resulting in hotspots with exceptionally high heat flux. In contrast, the remaining processor area experiences significantly lower heat flux, leading to substantial temperature nonuniformity across the chip. An efficient heat sink must be capable of applying distinct cooling capacities specific to each zone. This study presents an energy-efficient heat sink design aimed at mitigating severe temperature variations in microprocessors. The design concept involves dividing the processor's hot surface into zones based on heat flux intensity and integrating different microstructures and materials into each respective zone for optimized thermal management. The proposed hybrid-composite design was developed by incorporating silicon microchannels for the low-heat-flux zone and diamond microfins for the high-heat-flux zone. Integrating microfins (hybrid design) substantially enhances the solid-fluid interface area over the hotspot zone, while using diamond (composite design) dramatically improves heat conduction from the hotspot. Full heat sinks were modeled for conjugate heat transfer investigation. The thermo-hydraulic performance of hybrid-composite design was compared against that of simple, simple-composite, and hybrid designs. The hybrid-composite design demonstrated substantial enhancement in thermal performance compared to all the other designs, with a moderate rise in pumping power. In comparison to the simple microchannel design, the hybrid-composite design demonstrated a 66.0 % reduction in thermal resistance and a 74.3 % decrease in temperature nonuniformity. Additionally, the hybrid-composite design could effectively mitigate a hotspot heat flux of up to 2400 W/cm2 with only 8.6 % higher pumping power, while the simple microchannel design reached the maximum permissible temperature limit at 700 W/cm2.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.