Yue-lun Wang , Han-bing Gao , Wei-hua Zhao , Xu Yan , Jing Liang , Yun-Peng Zhao , Jing-pei Cao , Lin-jun Zhu
{"title":"在甲醇气氛下,在 Zr 和/或 Fe 改性空心 ZSM-5 沸石上催化褐煤热解挥发物升级为轻芳烃","authors":"Yue-lun Wang , Han-bing Gao , Wei-hua Zhao , Xu Yan , Jing Liang , Yun-Peng Zhao , Jing-pei Cao , Lin-jun Zhu","doi":"10.1016/j.micromeso.2024.113362","DOIUrl":null,"url":null,"abstract":"<div><div>Fe and Zr modified hollow ZSM-5 zeolites were prepared and their applications in upgrading of lignite pyrolysis volatiles coupling with methanol to light aromatics were investigated. The results demonstrated that hollow zeolites with larger voids and shorter diffusion length favored the production of light aromatics. Adding Fe and Zr into ZSM-5 zeolites further enhanced BTX yields due to the synergism between metals and acid sites for promoting hydrodeoxygenation reactions. Meanwhile, Zr-Fe/HZ-5 catalyst with increasing Lewis acid sites facilitated methylation leading to high selectivity of xylene under methanol atmosphere. Moreover, diffusion behaviors of xylene were quantified. Higher self-diffusion coefficient of molecules in hollow zeolites led to the formation of less coke, while the incorporation of Fe and Zr promoted the formation of catalytic coke due to the increase of alkylation resulting in partial conversion of BTX into PAHs on external surfaces although the total coke yields were further decreased.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"381 ","pages":"Article 113362"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalytic upgrading of lignite pyrolysis volatiles to light aromatics under methanol atmosphere over Zr and/or Fe modified hollow ZSM-5 zeolites\",\"authors\":\"Yue-lun Wang , Han-bing Gao , Wei-hua Zhao , Xu Yan , Jing Liang , Yun-Peng Zhao , Jing-pei Cao , Lin-jun Zhu\",\"doi\":\"10.1016/j.micromeso.2024.113362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fe and Zr modified hollow ZSM-5 zeolites were prepared and their applications in upgrading of lignite pyrolysis volatiles coupling with methanol to light aromatics were investigated. The results demonstrated that hollow zeolites with larger voids and shorter diffusion length favored the production of light aromatics. Adding Fe and Zr into ZSM-5 zeolites further enhanced BTX yields due to the synergism between metals and acid sites for promoting hydrodeoxygenation reactions. Meanwhile, Zr-Fe/HZ-5 catalyst with increasing Lewis acid sites facilitated methylation leading to high selectivity of xylene under methanol atmosphere. Moreover, diffusion behaviors of xylene were quantified. Higher self-diffusion coefficient of molecules in hollow zeolites led to the formation of less coke, while the incorporation of Fe and Zr promoted the formation of catalytic coke due to the increase of alkylation resulting in partial conversion of BTX into PAHs on external surfaces although the total coke yields were further decreased.</div></div>\",\"PeriodicalId\":392,\"journal\":{\"name\":\"Microporous and Mesoporous Materials\",\"volume\":\"381 \",\"pages\":\"Article 113362\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microporous and Mesoporous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387181124003846\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124003846","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Catalytic upgrading of lignite pyrolysis volatiles to light aromatics under methanol atmosphere over Zr and/or Fe modified hollow ZSM-5 zeolites
Fe and Zr modified hollow ZSM-5 zeolites were prepared and their applications in upgrading of lignite pyrolysis volatiles coupling with methanol to light aromatics were investigated. The results demonstrated that hollow zeolites with larger voids and shorter diffusion length favored the production of light aromatics. Adding Fe and Zr into ZSM-5 zeolites further enhanced BTX yields due to the synergism between metals and acid sites for promoting hydrodeoxygenation reactions. Meanwhile, Zr-Fe/HZ-5 catalyst with increasing Lewis acid sites facilitated methylation leading to high selectivity of xylene under methanol atmosphere. Moreover, diffusion behaviors of xylene were quantified. Higher self-diffusion coefficient of molecules in hollow zeolites led to the formation of less coke, while the incorporation of Fe and Zr promoted the formation of catalytic coke due to the increase of alkylation resulting in partial conversion of BTX into PAHs on external surfaces although the total coke yields were further decreased.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.