载银氮化石墨碳的制备策略、特性亮点以及在环境、生物和能源行业的新兴应用:重要综述

IF 15.9 1区 化学 Q1 CHEMISTRY, PHYSICAL Advances in Colloid and Interface Science Pub Date : 2024-10-05 DOI:10.1016/j.cis.2024.103307
Che Quang Cong , Le Minh Huong , Nguyen Minh Dat , Nguyen Thanh Hoai Nam , Hoang An , Nguyen Duy Hai , Nguyen Hung Vu , Nguyen Huu Hieu
{"title":"载银氮化石墨碳的制备策略、特性亮点以及在环境、生物和能源行业的新兴应用:重要综述","authors":"Che Quang Cong ,&nbsp;Le Minh Huong ,&nbsp;Nguyen Minh Dat ,&nbsp;Nguyen Thanh Hoai Nam ,&nbsp;Hoang An ,&nbsp;Nguyen Duy Hai ,&nbsp;Nguyen Hung Vu ,&nbsp;Nguyen Huu Hieu","doi":"10.1016/j.cis.2024.103307","DOIUrl":null,"url":null,"abstract":"<div><div>In light of escalating environmental pollution and tremendous energy shortage, the development of multifunctional materials with diverse applications across biomedical and energy production platforms has become imperative. Among this domain, nanostructured heterogeneous composites based on semiconductors are exclusively promising owing to their distinct configurations. Notably, graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub> (CN)) has drawn substantial interest as a sustainable candidate with surface functionality, electron-rich nature, and interconnected conjugation system along the polymeric matrix. To address the remaining limitations in sub-optimal visible light absorption and rapid charge recombination, the decoration of plasmonic metals, particularly silver (Ag) nanostructures, on bare CN has been reported to induce considerable synergistic promotions. This review highlights the major advancements and challenges in designing silver-loaded graphitic carbon nitride (Ag/CN (ACN)). Fundamentals in typical synthetic strategies, such as hydrothermal, co-precipitation, or chemical reduction, for ACN heterostructures are summarized. The appearance of Ag also influences the inherent properties of CN, as emphasized through alterations in structural as well as electronic behaviors in many studies. We expect that this study can deepen insights into multiple extending applications of ACN regarding environmental, biological, and energy industries, thanks to its favorable well-rounded attributions.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"334 ","pages":"Article 103307"},"PeriodicalIF":15.9000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation strategies, properties highlights, and emerging applications across environmental, biological, and energy industries of silver-loaded graphitic carbon nitride: A critical review\",\"authors\":\"Che Quang Cong ,&nbsp;Le Minh Huong ,&nbsp;Nguyen Minh Dat ,&nbsp;Nguyen Thanh Hoai Nam ,&nbsp;Hoang An ,&nbsp;Nguyen Duy Hai ,&nbsp;Nguyen Hung Vu ,&nbsp;Nguyen Huu Hieu\",\"doi\":\"10.1016/j.cis.2024.103307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In light of escalating environmental pollution and tremendous energy shortage, the development of multifunctional materials with diverse applications across biomedical and energy production platforms has become imperative. Among this domain, nanostructured heterogeneous composites based on semiconductors are exclusively promising owing to their distinct configurations. Notably, graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub> (CN)) has drawn substantial interest as a sustainable candidate with surface functionality, electron-rich nature, and interconnected conjugation system along the polymeric matrix. To address the remaining limitations in sub-optimal visible light absorption and rapid charge recombination, the decoration of plasmonic metals, particularly silver (Ag) nanostructures, on bare CN has been reported to induce considerable synergistic promotions. This review highlights the major advancements and challenges in designing silver-loaded graphitic carbon nitride (Ag/CN (ACN)). Fundamentals in typical synthetic strategies, such as hydrothermal, co-precipitation, or chemical reduction, for ACN heterostructures are summarized. The appearance of Ag also influences the inherent properties of CN, as emphasized through alterations in structural as well as electronic behaviors in many studies. We expect that this study can deepen insights into multiple extending applications of ACN regarding environmental, biological, and energy industries, thanks to its favorable well-rounded attributions.</div></div>\",\"PeriodicalId\":239,\"journal\":{\"name\":\"Advances in Colloid and Interface Science\",\"volume\":\"334 \",\"pages\":\"Article 103307\"},\"PeriodicalIF\":15.9000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001868624002306\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868624002306","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

鉴于日益严重的环境污染和巨大的能源短缺,开发在生物医学和能源生产平台上具有多种应用的多功能材料已势在必行。在这一领域中,基于半导体的纳米结构异质复合材料因其独特的构造而独具前景。值得注意的是,石墨氮化碳(g-C3N4 (CN))作为一种可持续的候选材料,因其表面功能性、富电子性以及与聚合物基体相互连接的共轭体系而备受关注。为了解决剩余的次优可见光吸收和快速电荷重组限制,有报道称在裸 CN 上装饰等离子金属,特别是银(Ag)纳米结构,可产生相当大的协同促进作用。本综述重点介绍设计银载氮化石墨碳(Ag/CN (ACN))的主要进展和挑战。综述了水热法、共沉淀法或化学还原法等 ACN 异质结构典型合成策略的基本原理。银的出现也会影响氯化萘的固有特性,这在许多研究中通过结构和电子行为的改变得到了强调。我们希望这项研究能加深人们对 ACN 在环境、生物和能源行业的多种扩展应用的了解,这要归功于其良好的全面属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation strategies, properties highlights, and emerging applications across environmental, biological, and energy industries of silver-loaded graphitic carbon nitride: A critical review
In light of escalating environmental pollution and tremendous energy shortage, the development of multifunctional materials with diverse applications across biomedical and energy production platforms has become imperative. Among this domain, nanostructured heterogeneous composites based on semiconductors are exclusively promising owing to their distinct configurations. Notably, graphitic carbon nitride (g-C3N4 (CN)) has drawn substantial interest as a sustainable candidate with surface functionality, electron-rich nature, and interconnected conjugation system along the polymeric matrix. To address the remaining limitations in sub-optimal visible light absorption and rapid charge recombination, the decoration of plasmonic metals, particularly silver (Ag) nanostructures, on bare CN has been reported to induce considerable synergistic promotions. This review highlights the major advancements and challenges in designing silver-loaded graphitic carbon nitride (Ag/CN (ACN)). Fundamentals in typical synthetic strategies, such as hydrothermal, co-precipitation, or chemical reduction, for ACN heterostructures are summarized. The appearance of Ag also influences the inherent properties of CN, as emphasized through alterations in structural as well as electronic behaviors in many studies. We expect that this study can deepen insights into multiple extending applications of ACN regarding environmental, biological, and energy industries, thanks to its favorable well-rounded attributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
28.50
自引率
2.60%
发文量
175
审稿时长
31 days
期刊介绍: "Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology. The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas. Typically, the articles published in this journal are written by recognized experts in the field.
期刊最新文献
Genetically modified organoids for tissue engineering and regenerative medicine Recent achievements and performance of nanomaterials in microwave absorption and electromagnetic shielding Viscoelastic properties of colloidal systems with attractive solid particles at low concentration: A review, new results and interpretations Biohybrid nano-platforms manifesting effective cancer therapy: Fabrication, characterization, challenges and clinical perspective Cellulose-based functional textiles through surface nano-engineering with MXene and MXene-based composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1