深度神经网络和信任管理方法确保可持续智慧城市中智能交通数据的安全

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS ICT Express Pub Date : 2024-10-01 DOI:10.1016/j.icte.2024.08.006
Sohrab Khan , Sheharyar Khan , Adel Sulaiman , Mana Saleh Al Reshan , Hani Alshahrani , Asadullah Shaikh
{"title":"深度神经网络和信任管理方法确保可持续智慧城市中智能交通数据的安全","authors":"Sohrab Khan ,&nbsp;Sheharyar Khan ,&nbsp;Adel Sulaiman ,&nbsp;Mana Saleh Al Reshan ,&nbsp;Hani Alshahrani ,&nbsp;Asadullah Shaikh","doi":"10.1016/j.icte.2024.08.006","DOIUrl":null,"url":null,"abstract":"<div><div>Smart transportation, powered by IoT, transforms mobility with interconnected sensors and devices collecting real-time data on traffic, vehicle locations, and passenger needs. This fosters a safer and more sustainable transportation ecosystem, optimizing traffic flow and enhancing public transit efficiency. However, security and privacy challenges emerge in smart transportation systems. Our proposed solution involves a deep neural network (DNN) model trained on extensive datasets from sustainable cities, incorporating historical information like traffic patterns and sensor readings. This model identifies potential malicious nodes, achieving a 90% accuracy rate in predicting threats such as Denial of Service 88%, Whitewash attacks 80%, and Brute Force attacks 75%. This high precision ensures the security and privacy of passenger vehicle data and routes.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 5","pages":"Pages 1059-1065"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep neural network and trust management approach to secure smart transportation data in sustainable smart cities\",\"authors\":\"Sohrab Khan ,&nbsp;Sheharyar Khan ,&nbsp;Adel Sulaiman ,&nbsp;Mana Saleh Al Reshan ,&nbsp;Hani Alshahrani ,&nbsp;Asadullah Shaikh\",\"doi\":\"10.1016/j.icte.2024.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Smart transportation, powered by IoT, transforms mobility with interconnected sensors and devices collecting real-time data on traffic, vehicle locations, and passenger needs. This fosters a safer and more sustainable transportation ecosystem, optimizing traffic flow and enhancing public transit efficiency. However, security and privacy challenges emerge in smart transportation systems. Our proposed solution involves a deep neural network (DNN) model trained on extensive datasets from sustainable cities, incorporating historical information like traffic patterns and sensor readings. This model identifies potential malicious nodes, achieving a 90% accuracy rate in predicting threats such as Denial of Service 88%, Whitewash attacks 80%, and Brute Force attacks 75%. This high precision ensures the security and privacy of passenger vehicle data and routes.</div></div>\",\"PeriodicalId\":48526,\"journal\":{\"name\":\"ICT Express\",\"volume\":\"10 5\",\"pages\":\"Pages 1059-1065\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT Express\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405959524000936\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959524000936","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

由物联网驱动的智能交通通过互联传感器和设备收集有关交通、车辆位置和乘客需求的实时数据,改变了交通方式。这促进了更安全、更可持续的交通生态系统,优化了交通流量,提高了公共交通效率。然而,智能交通系统也面临着安全和隐私方面的挑战。我们提出的解决方案涉及一个深度神经网络(DNN)模型,该模型在来自可持续发展城市的大量数据集上进行训练,并结合了交通模式和传感器读数等历史信息。该模型可识别潜在的恶意节点,在预测拒绝服务 88%、洗白攻击 80% 和暴力攻击 75% 等威胁方面的准确率高达 90%。这种高精确度确保了客运车辆数据和路线的安全性和隐私性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep neural network and trust management approach to secure smart transportation data in sustainable smart cities
Smart transportation, powered by IoT, transforms mobility with interconnected sensors and devices collecting real-time data on traffic, vehicle locations, and passenger needs. This fosters a safer and more sustainable transportation ecosystem, optimizing traffic flow and enhancing public transit efficiency. However, security and privacy challenges emerge in smart transportation systems. Our proposed solution involves a deep neural network (DNN) model trained on extensive datasets from sustainable cities, incorporating historical information like traffic patterns and sensor readings. This model identifies potential malicious nodes, achieving a 90% accuracy rate in predicting threats such as Denial of Service 88%, Whitewash attacks 80%, and Brute Force attacks 75%. This high precision ensures the security and privacy of passenger vehicle data and routes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
期刊最新文献
Editorial Board Performance analysis of multi-hop low earth orbit satellite network over mixed RF/FSO links Symbol-level precoding scheme robust to channel estimation errors in wireless fading channels Hybrid Approach with Membership-Density Based Oversampling for handling multi-class imbalance in Internet Traffic Identification with overlapping and noise Integrated beamforming and trajectory optimization algorithm for RIS-assisted UAV system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1