Zoran Bergant, Roman Šturm, Tomaž Kek, Miroslav Halilovič, Andraž Maček
{"title":"加载角度对交叉层缺口生物钴复合材料失效的影响","authors":"Zoran Bergant, Roman Šturm, Tomaž Kek, Miroslav Halilovič, Andraž Maček","doi":"10.1016/j.polymertesting.2024.108609","DOIUrl":null,"url":null,"abstract":"<div><div>A cross-ply basalt V-notched butterfly specimens were subjected to pure tension, combined tension-shear, and shear stress-strain state using a modified Arcan test fixture with loading angles from 0° to 90° with 15° increment. Multiaxial stress and strain states were studied using the principal stress and strain ratio, from which the principal angle was determined and used to represent principal states in the gauge section. The quasi-elastic to non-linear transition stresses were determined for each loading angle. In biaxial stress-strain states and pure shear, the deformation and consequently the shear-induced damage start to accumulate significantly. Also, in biaxial stress-strain states between 15°-75°, the shift from tension-shear to pure shear was observed after the transition to the non-linear part of the stress-strain curve. The digital image correlation (DIC) images and microscopic evaluation show that a large extent of damage is the consequence of the shear deformation after the rotation of 0° clamped fibres, while the 90° fibres maintained their original straight form. In off-axis tests, the principal strain axis rotates towards the weakest material axis even at small off-axis angles. This causes a transition from a tension-shear biaxial state in the linear loading part to shear in the non-linear part, leading to irreversible damage beyond the transition point.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"140 ","pages":"Article 108609"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effects of Loading Angles on the Failure of Cross-Ply Notched Bio-Basalt Composites\",\"authors\":\"Zoran Bergant, Roman Šturm, Tomaž Kek, Miroslav Halilovič, Andraž Maček\",\"doi\":\"10.1016/j.polymertesting.2024.108609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A cross-ply basalt V-notched butterfly specimens were subjected to pure tension, combined tension-shear, and shear stress-strain state using a modified Arcan test fixture with loading angles from 0° to 90° with 15° increment. Multiaxial stress and strain states were studied using the principal stress and strain ratio, from which the principal angle was determined and used to represent principal states in the gauge section. The quasi-elastic to non-linear transition stresses were determined for each loading angle. In biaxial stress-strain states and pure shear, the deformation and consequently the shear-induced damage start to accumulate significantly. Also, in biaxial stress-strain states between 15°-75°, the shift from tension-shear to pure shear was observed after the transition to the non-linear part of the stress-strain curve. The digital image correlation (DIC) images and microscopic evaluation show that a large extent of damage is the consequence of the shear deformation after the rotation of 0° clamped fibres, while the 90° fibres maintained their original straight form. In off-axis tests, the principal strain axis rotates towards the weakest material axis even at small off-axis angles. This causes a transition from a tension-shear biaxial state in the linear loading part to shear in the non-linear part, leading to irreversible damage beyond the transition point.</div></div>\",\"PeriodicalId\":20628,\"journal\":{\"name\":\"Polymer Testing\",\"volume\":\"140 \",\"pages\":\"Article 108609\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Testing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142941824002861\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941824002861","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
The Effects of Loading Angles on the Failure of Cross-Ply Notched Bio-Basalt Composites
A cross-ply basalt V-notched butterfly specimens were subjected to pure tension, combined tension-shear, and shear stress-strain state using a modified Arcan test fixture with loading angles from 0° to 90° with 15° increment. Multiaxial stress and strain states were studied using the principal stress and strain ratio, from which the principal angle was determined and used to represent principal states in the gauge section. The quasi-elastic to non-linear transition stresses were determined for each loading angle. In biaxial stress-strain states and pure shear, the deformation and consequently the shear-induced damage start to accumulate significantly. Also, in biaxial stress-strain states between 15°-75°, the shift from tension-shear to pure shear was observed after the transition to the non-linear part of the stress-strain curve. The digital image correlation (DIC) images and microscopic evaluation show that a large extent of damage is the consequence of the shear deformation after the rotation of 0° clamped fibres, while the 90° fibres maintained their original straight form. In off-axis tests, the principal strain axis rotates towards the weakest material axis even at small off-axis angles. This causes a transition from a tension-shear biaxial state in the linear loading part to shear in the non-linear part, leading to irreversible damage beyond the transition point.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.