Xiangbo Zhang , Gang Liu , Mingyi Li , Qin Ren , Haojie Tang , Durga Prasad Bavirisetti
{"title":"FusionNGFPE:非全局模糊预增强框架驱动的图像融合方法","authors":"Xiangbo Zhang , Gang Liu , Mingyi Li , Qin Ren , Haojie Tang , Durga Prasad Bavirisetti","doi":"10.1016/j.dsp.2024.104801","DOIUrl":null,"url":null,"abstract":"<div><div>The majority of prevailing image fusion methods employ a global strategy, often resulting in a reduction of contrast. This study addresses this issue by proposing a novel image fusion approach called FusionNGFPE, specifically designed for the structural characteristics of infrared (IR) imagery. The approach introduces a contrast equalization algorithm based on the Fourth-order Partial Differential Equation (FPDE) to enhance background regions effectively. Considering the inherent differences between IR and visible (VIS) images, we developed a hybrid fusion strategy that combines the Expectation Maximization (EM) algorithm and Principal Component Analysis (PCA). Comparative analysis with state-of-the-art fusion methods shows that our proposed algorithm achieves superior performance in both qualitative and quantitative evaluations. To further demonstrate the practical significance of FusionNGFPE, we integrated this fusion framework into the RGBT target tracking task using the VOT-RGBT and OTCBVS datasets. Extensive comparative experiments confirm that the FusionNGFPE framework integrates seamlessly with the tracking task, significantly improving tracking accuracy across diverse scenarios.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"156 ","pages":"Article 104801"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FusionNGFPE: An image fusion approach driven by non-global fuzzy pre-enhancement framework\",\"authors\":\"Xiangbo Zhang , Gang Liu , Mingyi Li , Qin Ren , Haojie Tang , Durga Prasad Bavirisetti\",\"doi\":\"10.1016/j.dsp.2024.104801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The majority of prevailing image fusion methods employ a global strategy, often resulting in a reduction of contrast. This study addresses this issue by proposing a novel image fusion approach called FusionNGFPE, specifically designed for the structural characteristics of infrared (IR) imagery. The approach introduces a contrast equalization algorithm based on the Fourth-order Partial Differential Equation (FPDE) to enhance background regions effectively. Considering the inherent differences between IR and visible (VIS) images, we developed a hybrid fusion strategy that combines the Expectation Maximization (EM) algorithm and Principal Component Analysis (PCA). Comparative analysis with state-of-the-art fusion methods shows that our proposed algorithm achieves superior performance in both qualitative and quantitative evaluations. To further demonstrate the practical significance of FusionNGFPE, we integrated this fusion framework into the RGBT target tracking task using the VOT-RGBT and OTCBVS datasets. Extensive comparative experiments confirm that the FusionNGFPE framework integrates seamlessly with the tracking task, significantly improving tracking accuracy across diverse scenarios.</div></div>\",\"PeriodicalId\":51011,\"journal\":{\"name\":\"Digital Signal Processing\",\"volume\":\"156 \",\"pages\":\"Article 104801\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1051200424004263\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200424004263","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
FusionNGFPE: An image fusion approach driven by non-global fuzzy pre-enhancement framework
The majority of prevailing image fusion methods employ a global strategy, often resulting in a reduction of contrast. This study addresses this issue by proposing a novel image fusion approach called FusionNGFPE, specifically designed for the structural characteristics of infrared (IR) imagery. The approach introduces a contrast equalization algorithm based on the Fourth-order Partial Differential Equation (FPDE) to enhance background regions effectively. Considering the inherent differences between IR and visible (VIS) images, we developed a hybrid fusion strategy that combines the Expectation Maximization (EM) algorithm and Principal Component Analysis (PCA). Comparative analysis with state-of-the-art fusion methods shows that our proposed algorithm achieves superior performance in both qualitative and quantitative evaluations. To further demonstrate the practical significance of FusionNGFPE, we integrated this fusion framework into the RGBT target tracking task using the VOT-RGBT and OTCBVS datasets. Extensive comparative experiments confirm that the FusionNGFPE framework integrates seamlessly with the tracking task, significantly improving tracking accuracy across diverse scenarios.
期刊介绍:
Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal.
The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as:
• big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,