Dasom Jeong , Seong Cheon Kim , Min Gu Kang , Sung Nam Lim , Ju Young Woo , Haejin Hwang , Siyoung Q. Choi , Jeasung Park
{"title":"将从人类头发中提取的可再生亲水性碳量子点作为钒氧化还原液流电池用 Nafion 复合膜的填料","authors":"Dasom Jeong , Seong Cheon Kim , Min Gu Kang , Sung Nam Lim , Ju Young Woo , Haejin Hwang , Siyoung Q. Choi , Jeasung Park","doi":"10.1016/j.susmat.2024.e01141","DOIUrl":null,"url":null,"abstract":"<div><div>Renewable and environmentally benign hydrophilic carbon quantum dots (CQDs) were synthesized using a hydrothermal method. Subsequently, composite membranes of Nafion/CQDs, demonstrating outstanding performance metrics for vanadium redox flow batteries (VRFBs), were developed. Employing a straightforward solution-casting technique, these membranes exhibited superior proton conductivity and reduced vanadium ion permeability. Tested at an elevated current density of 120 mA/cm<sup>2</sup>, the single cell VRFB integrated with the optimized Nafion/CQDs composite membrane outperformed its commercial counterparts, achieving a high coulombic efficiency of approximately 96.13 % and an energy efficiency of nearly 85.46 %. Moreover, it demonstrated significant cycle life, retaining about 17.1 % of its capacity after 100 cycles, compared to 27.2 % capacity retention for the N-recast membrane over the same period. These results position the Nafion/CQDs composite membrane as a formidable contender in the VRFB domain, emphasizing its potential for broader commercial applications.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"42 ","pages":"Article e01141"},"PeriodicalIF":8.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Renewable and hydrophilic carbon quantum dots derived from human hair as the filler in Nafion composite membrane for vanadium redox flow battery application\",\"authors\":\"Dasom Jeong , Seong Cheon Kim , Min Gu Kang , Sung Nam Lim , Ju Young Woo , Haejin Hwang , Siyoung Q. Choi , Jeasung Park\",\"doi\":\"10.1016/j.susmat.2024.e01141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Renewable and environmentally benign hydrophilic carbon quantum dots (CQDs) were synthesized using a hydrothermal method. Subsequently, composite membranes of Nafion/CQDs, demonstrating outstanding performance metrics for vanadium redox flow batteries (VRFBs), were developed. Employing a straightforward solution-casting technique, these membranes exhibited superior proton conductivity and reduced vanadium ion permeability. Tested at an elevated current density of 120 mA/cm<sup>2</sup>, the single cell VRFB integrated with the optimized Nafion/CQDs composite membrane outperformed its commercial counterparts, achieving a high coulombic efficiency of approximately 96.13 % and an energy efficiency of nearly 85.46 %. Moreover, it demonstrated significant cycle life, retaining about 17.1 % of its capacity after 100 cycles, compared to 27.2 % capacity retention for the N-recast membrane over the same period. These results position the Nafion/CQDs composite membrane as a formidable contender in the VRFB domain, emphasizing its potential for broader commercial applications.</div></div>\",\"PeriodicalId\":22097,\"journal\":{\"name\":\"Sustainable Materials and Technologies\",\"volume\":\"42 \",\"pages\":\"Article e01141\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Materials and Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221499372400321X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221499372400321X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Renewable and hydrophilic carbon quantum dots derived from human hair as the filler in Nafion composite membrane for vanadium redox flow battery application
Renewable and environmentally benign hydrophilic carbon quantum dots (CQDs) were synthesized using a hydrothermal method. Subsequently, composite membranes of Nafion/CQDs, demonstrating outstanding performance metrics for vanadium redox flow batteries (VRFBs), were developed. Employing a straightforward solution-casting technique, these membranes exhibited superior proton conductivity and reduced vanadium ion permeability. Tested at an elevated current density of 120 mA/cm2, the single cell VRFB integrated with the optimized Nafion/CQDs composite membrane outperformed its commercial counterparts, achieving a high coulombic efficiency of approximately 96.13 % and an energy efficiency of nearly 85.46 %. Moreover, it demonstrated significant cycle life, retaining about 17.1 % of its capacity after 100 cycles, compared to 27.2 % capacity retention for the N-recast membrane over the same period. These results position the Nafion/CQDs composite membrane as a formidable contender in the VRFB domain, emphasizing its potential for broader commercial applications.
期刊介绍:
Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.