{"title":"溶胶凝胶制备的氧化锌:紫外线辐照对结构和表面特性的影响","authors":"","doi":"10.1016/j.mencom.2024.09.006","DOIUrl":null,"url":null,"abstract":"<div><div>The effect of UV irradiation on sol–gel prepared ZnO films subjected to mild thermal annealing was investigated, with special attention to their structural and surface properties. Sol–gel processes, including a high-temperature annealing stage, have been adapted to the requirements of flexible electronics for <em>in situ</em> synthesis of semiconductor ZnO films on polymer substrates at lower temperatures due to UV irradiation. Application of UV radiation with emission peaks at 185 and 254 nm to films annealed at 180 °C made it possible to obtain ZnO films with Zn/O ratios of <em>ca</em>. 1, which cannot be achieved by heat treatment alone.</div></div>","PeriodicalId":18542,"journal":{"name":"Mendeleev Communications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sol–gel prepared ZnO: UV irradiation effect on structure and surface properties\",\"authors\":\"\",\"doi\":\"10.1016/j.mencom.2024.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The effect of UV irradiation on sol–gel prepared ZnO films subjected to mild thermal annealing was investigated, with special attention to their structural and surface properties. Sol–gel processes, including a high-temperature annealing stage, have been adapted to the requirements of flexible electronics for <em>in situ</em> synthesis of semiconductor ZnO films on polymer substrates at lower temperatures due to UV irradiation. Application of UV radiation with emission peaks at 185 and 254 nm to films annealed at 180 °C made it possible to obtain ZnO films with Zn/O ratios of <em>ca</em>. 1, which cannot be achieved by heat treatment alone.</div></div>\",\"PeriodicalId\":18542,\"journal\":{\"name\":\"Mendeleev Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mendeleev Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959943624002451\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mendeleev Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959943624002451","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Sol–gel prepared ZnO: UV irradiation effect on structure and surface properties
The effect of UV irradiation on sol–gel prepared ZnO films subjected to mild thermal annealing was investigated, with special attention to their structural and surface properties. Sol–gel processes, including a high-temperature annealing stage, have been adapted to the requirements of flexible electronics for in situ synthesis of semiconductor ZnO films on polymer substrates at lower temperatures due to UV irradiation. Application of UV radiation with emission peaks at 185 and 254 nm to films annealed at 180 °C made it possible to obtain ZnO films with Zn/O ratios of ca. 1, which cannot be achieved by heat treatment alone.
期刊介绍:
Mendeleev Communications is the journal of the Russian Academy of Sciences, launched jointly by the Academy of Sciences of the USSR and the Royal Society of Chemistry (United Kingdom) in 1991. Starting from 1st January 2007, Elsevier is the new publishing partner of Mendeleev Communications.
Mendeleev Communications publishes short communications in chemistry. The journal primarily features papers from the Russian Federation and the other states of the former USSR. However, it also includes papers by authors from other parts of the world. Mendeleev Communications is not a translated journal, but instead is published directly in English. The International Editorial Board is composed of eminent scientists who provide advice on refereeing policy.