H. Saeidfirozeh , P. Kubelík , V. Laitl , A. Křivková , J. Vrábel , K. Rammelkamp , S. Schröder , I.B. Gornushkin , E. Képeš , J. Žabka , M. Ferus , P. Pořízka , J. Kaiser
{"title":"空间应用中的激光诱导击穿光谱:回顾与展望","authors":"H. Saeidfirozeh , P. Kubelík , V. Laitl , A. Křivková , J. Vrábel , K. Rammelkamp , S. Schröder , I.B. Gornushkin , E. Képeš , J. Žabka , M. Ferus , P. Pořízka , J. Kaiser","doi":"10.1016/j.trac.2024.117991","DOIUrl":null,"url":null,"abstract":"<div><div>This review describes the principles and summarizes the challenges of analytical methods based on optical emission spectroscopy (OES) in space applications, with a particular focus on Laser-Induced Breakdown Spectroscopy (LIBS). Over the past decade, LIBS has emerged as a powerful analytical technique for space exploration and In-Situ Resource Utilization (ISRU) of celestial bodies. Its implementation has been suggested for various segments of the Space Resources Value Chain, including prospecting, mining, and beneficiation. Current missions to Mars, including the ChemCam instrument on the Curiosity rover, the SuperCam on the Perseverance rover, and the MarSCoDe on the Zhurong rover, are considered flagship applications of LIBS. Despite neither the Pragyan rover nor the Vikram lander waking from the lunar night, the success of the Chandrayaan-3 mission marks another milestone in the development of LIBS instruments, with further missions, including commercial ones, anticipated.</div><div>This paper reviews the deployment of LIBS payloads on Mars rovers, upcoming missions prospecting the Moon and asteroids, and LIBS analysis of meteorites. Additionally, it highlights the importance of data processing specific to space applications, emphasizing recent trends in transfer learning. Furthermore, LIBS combined with other spectroscopic techniques (e.g., Raman Spectroscopy, Mass Spectrometry, and Fourier-Transform Infrared Spectroscopy) represents an intriguing platform with comprehensive analytical capabilities. The review concludes by emphasizing the significance of LIBS-based contributions in advancing our understanding of celestial bodies and paving the way for future space exploration endeavors.</div></div>","PeriodicalId":439,"journal":{"name":"Trends in Analytical Chemistry","volume":"181 ","pages":"Article 117991"},"PeriodicalIF":11.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser-induced breakdown spectroscopy in space applications: Review and prospects\",\"authors\":\"H. Saeidfirozeh , P. Kubelík , V. Laitl , A. Křivková , J. Vrábel , K. Rammelkamp , S. Schröder , I.B. Gornushkin , E. Képeš , J. Žabka , M. Ferus , P. Pořízka , J. Kaiser\",\"doi\":\"10.1016/j.trac.2024.117991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This review describes the principles and summarizes the challenges of analytical methods based on optical emission spectroscopy (OES) in space applications, with a particular focus on Laser-Induced Breakdown Spectroscopy (LIBS). Over the past decade, LIBS has emerged as a powerful analytical technique for space exploration and In-Situ Resource Utilization (ISRU) of celestial bodies. Its implementation has been suggested for various segments of the Space Resources Value Chain, including prospecting, mining, and beneficiation. Current missions to Mars, including the ChemCam instrument on the Curiosity rover, the SuperCam on the Perseverance rover, and the MarSCoDe on the Zhurong rover, are considered flagship applications of LIBS. Despite neither the Pragyan rover nor the Vikram lander waking from the lunar night, the success of the Chandrayaan-3 mission marks another milestone in the development of LIBS instruments, with further missions, including commercial ones, anticipated.</div><div>This paper reviews the deployment of LIBS payloads on Mars rovers, upcoming missions prospecting the Moon and asteroids, and LIBS analysis of meteorites. Additionally, it highlights the importance of data processing specific to space applications, emphasizing recent trends in transfer learning. Furthermore, LIBS combined with other spectroscopic techniques (e.g., Raman Spectroscopy, Mass Spectrometry, and Fourier-Transform Infrared Spectroscopy) represents an intriguing platform with comprehensive analytical capabilities. The review concludes by emphasizing the significance of LIBS-based contributions in advancing our understanding of celestial bodies and paving the way for future space exploration endeavors.</div></div>\",\"PeriodicalId\":439,\"journal\":{\"name\":\"Trends in Analytical Chemistry\",\"volume\":\"181 \",\"pages\":\"Article 117991\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Analytical Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165993624004746\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Analytical Chemistry","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165993624004746","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Laser-induced breakdown spectroscopy in space applications: Review and prospects
This review describes the principles and summarizes the challenges of analytical methods based on optical emission spectroscopy (OES) in space applications, with a particular focus on Laser-Induced Breakdown Spectroscopy (LIBS). Over the past decade, LIBS has emerged as a powerful analytical technique for space exploration and In-Situ Resource Utilization (ISRU) of celestial bodies. Its implementation has been suggested for various segments of the Space Resources Value Chain, including prospecting, mining, and beneficiation. Current missions to Mars, including the ChemCam instrument on the Curiosity rover, the SuperCam on the Perseverance rover, and the MarSCoDe on the Zhurong rover, are considered flagship applications of LIBS. Despite neither the Pragyan rover nor the Vikram lander waking from the lunar night, the success of the Chandrayaan-3 mission marks another milestone in the development of LIBS instruments, with further missions, including commercial ones, anticipated.
This paper reviews the deployment of LIBS payloads on Mars rovers, upcoming missions prospecting the Moon and asteroids, and LIBS analysis of meteorites. Additionally, it highlights the importance of data processing specific to space applications, emphasizing recent trends in transfer learning. Furthermore, LIBS combined with other spectroscopic techniques (e.g., Raman Spectroscopy, Mass Spectrometry, and Fourier-Transform Infrared Spectroscopy) represents an intriguing platform with comprehensive analytical capabilities. The review concludes by emphasizing the significance of LIBS-based contributions in advancing our understanding of celestial bodies and paving the way for future space exploration endeavors.
期刊介绍:
TrAC publishes succinct and critical overviews of recent advancements in analytical chemistry, designed to assist analytical chemists and other users of analytical techniques. These reviews offer excellent, up-to-date, and timely coverage of various topics within analytical chemistry. Encompassing areas such as analytical instrumentation, biomedical analysis, biomolecular analysis, biosensors, chemical analysis, chemometrics, clinical chemistry, drug discovery, environmental analysis and monitoring, food analysis, forensic science, laboratory automation, materials science, metabolomics, pesticide-residue analysis, pharmaceutical analysis, proteomics, surface science, and water analysis and monitoring, these critical reviews provide comprehensive insights for practitioners in the field.