探索质量分散型 rGO 对磷酸三镍金属有机框架的原位影响,以实现更高能量密度的混合超级电容器

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS Journal of energy storage Pub Date : 2024-10-14 DOI:10.1016/j.est.2024.114140
{"title":"探索质量分散型 rGO 对磷酸三镍金属有机框架的原位影响,以实现更高能量密度的混合超级电容器","authors":"","doi":"10.1016/j.est.2024.114140","DOIUrl":null,"url":null,"abstract":"<div><div>The present study investigates effect of reduced graphene oxide (rGO) mass dispersoid @ 25, 50, 75, and 100 mg through in-situ process into Metal Organic Framework based Nickel Phosphate (MOFNP) synthesized by facile microwave technique. The XRD study confirms monoclinic crystalline geometry and 50 mg rGO dispersed MOFNP (MOFNPG2) composite has shown increase in crystallinity. SEM shows rectangular morphology for MOFNPG2 and Raman studies show I<sub>D</sub>/I<sub>G</sub> ratio of 1.01 for this composite revealing rGO coordination with MOFNP. BET studies reveal higher specific surface area (59.75 m<sup>2</sup> g<sup>−1</sup>) for MOFNPG2 and exhibits mesoporosity (3.14 nm) with type-IV Langmuir isotherm. The deconvoluted XPS spectra confirms oxidation states and chemical compositions of MOFNPG2. The CV profile identifies maximum oxidation for MOFNPG2, revealing EDLC / pseudocapacitance contribution and exhibiting higher specific capacitance of 854 F g<sup>−1</sup> @ 1 A g<sup>−1</sup>. The Full-Cell Device (FCD) MOFNPG2//rGO registers 175 F g<sup>−1</sup> @ 1 A g<sup>−1</sup> and energy density 79 Wh kg<sup>−1</sup>. The R<sub>esr</sub> is lower (0.19 Ω cm<sup>−2</sup>) for FCD which improvises electrode-electrolyte kinetics and results in enhanced conductivity for high energy density supercapacitor applications.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":null,"pages":null},"PeriodicalIF":8.9000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploratory mass dispersoid rGO in-situ influence on nickel phosphate-trimesic acid metal-organic framework for higher energy density hybrid supercapacitors\",\"authors\":\"\",\"doi\":\"10.1016/j.est.2024.114140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present study investigates effect of reduced graphene oxide (rGO) mass dispersoid @ 25, 50, 75, and 100 mg through in-situ process into Metal Organic Framework based Nickel Phosphate (MOFNP) synthesized by facile microwave technique. The XRD study confirms monoclinic crystalline geometry and 50 mg rGO dispersed MOFNP (MOFNPG2) composite has shown increase in crystallinity. SEM shows rectangular morphology for MOFNPG2 and Raman studies show I<sub>D</sub>/I<sub>G</sub> ratio of 1.01 for this composite revealing rGO coordination with MOFNP. BET studies reveal higher specific surface area (59.75 m<sup>2</sup> g<sup>−1</sup>) for MOFNPG2 and exhibits mesoporosity (3.14 nm) with type-IV Langmuir isotherm. The deconvoluted XPS spectra confirms oxidation states and chemical compositions of MOFNPG2. The CV profile identifies maximum oxidation for MOFNPG2, revealing EDLC / pseudocapacitance contribution and exhibiting higher specific capacitance of 854 F g<sup>−1</sup> @ 1 A g<sup>−1</sup>. The Full-Cell Device (FCD) MOFNPG2//rGO registers 175 F g<sup>−1</sup> @ 1 A g<sup>−1</sup> and energy density 79 Wh kg<sup>−1</sup>. The R<sub>esr</sub> is lower (0.19 Ω cm<sup>−2</sup>) for FCD which improvises electrode-electrolyte kinetics and results in enhanced conductivity for high energy density supercapacitor applications.</div></div>\",\"PeriodicalId\":15942,\"journal\":{\"name\":\"Journal of energy storage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of energy storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352152X24037265\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24037265","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过原位工艺将 25、50、75 和 100 毫克的还原型氧化石墨烯(rGO)分散到通过简便微波技术合成的基于金属有机框架的磷酸镍(MOFNP)中,研究其效果。XRD 研究证实了单斜晶体的几何形状,50 毫克 rGO 分散的 MOFNP (MOFNPG2) 复合材料的结晶度有所增加。扫描电子显微镜(SEM)显示 MOFNPG2 呈矩形,拉曼研究显示该复合材料的内径/内径比为 1.01,表明 rGO 与 MOFNP 配合。BET 研究显示,MOFNPG2 的比表面积(59.75 m2 g-1)更高,并且具有介孔率(3.14 nm)和 IV 型郎穆尔等温线。去卷积 XPS 光谱证实了 MOFNPG2 的氧化态和化学成分。CV 曲线确定了 MOFNPG2 的最大氧化态,揭示了 EDLC / 假电容的贡献,并显示出 854 F g-1 @ 1 A g-1 的较高比电容。全电池器件 (FCD) MOFNPG2/rGO 的比电容为 175 F g-1 @ 1 A g-1,能量密度为 79 Wh kg-1。FCD 的电阻率较低(0.19 Ω cm-2),这改善了电极-电解质动力学,从而提高了电导率,适用于高能量密度超级电容器应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploratory mass dispersoid rGO in-situ influence on nickel phosphate-trimesic acid metal-organic framework for higher energy density hybrid supercapacitors
The present study investigates effect of reduced graphene oxide (rGO) mass dispersoid @ 25, 50, 75, and 100 mg through in-situ process into Metal Organic Framework based Nickel Phosphate (MOFNP) synthesized by facile microwave technique. The XRD study confirms monoclinic crystalline geometry and 50 mg rGO dispersed MOFNP (MOFNPG2) composite has shown increase in crystallinity. SEM shows rectangular morphology for MOFNPG2 and Raman studies show ID/IG ratio of 1.01 for this composite revealing rGO coordination with MOFNP. BET studies reveal higher specific surface area (59.75 m2 g−1) for MOFNPG2 and exhibits mesoporosity (3.14 nm) with type-IV Langmuir isotherm. The deconvoluted XPS spectra confirms oxidation states and chemical compositions of MOFNPG2. The CV profile identifies maximum oxidation for MOFNPG2, revealing EDLC / pseudocapacitance contribution and exhibiting higher specific capacitance of 854 F g−1 @ 1 A g−1. The Full-Cell Device (FCD) MOFNPG2//rGO registers 175 F g−1 @ 1 A g−1 and energy density 79 Wh kg−1. The Resr is lower (0.19 Ω cm−2) for FCD which improvises electrode-electrolyte kinetics and results in enhanced conductivity for high energy density supercapacitor applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
期刊最新文献
Improvement of the thermal management of lithium-ion battery with helical tube liquid cooling and phase change material integration Efficiency improvement and pressure pulsation reduction of volute centrifugal pump through diffuser design optimization Fast kinetics for lithium storage rendered by Li3VO4 nanoparticles/porous N-doped carbon nanofibers Accelerating float current measurement with temperature ramps revealing entropy insights A highly water-soluble phenoxazine quaternary ammonium compound catholyte for pH-neutral aqueous organic redox flow batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1