接种 1 号菌株疫苗的双菌株 COVID-19 协同感染模型

Taqi A.M. Shatnawi , Stephane Y. Tchoumi , Herieth Rwezaura , Khalid Dib , Jean M. Tchuenche , Mo’tassem Al-arydah
{"title":"接种 1 号菌株疫苗的双菌株 COVID-19 协同感染模型","authors":"Taqi A.M. Shatnawi ,&nbsp;Stephane Y. Tchoumi ,&nbsp;Herieth Rwezaura ,&nbsp;Khalid Dib ,&nbsp;Jean M. Tchuenche ,&nbsp;Mo’tassem Al-arydah","doi":"10.1016/j.padiff.2024.100945","DOIUrl":null,"url":null,"abstract":"<div><div>COVID-19 has caused substantial morbidity and mortality worldwide. Previous models of strain 1 vaccination with re-infection when vaccinated, as well as infection with strain 2 did not consider co-infected classes. To fill this gap, a two co-circulating COVID-19 strains model with strain 1 vaccination, and co-infected is formulated and theoretically analyzed. Sufficient conditions for the stability of the disease-free equilibrium and single-strain 1 and -strain 2 endemic equilibria are obtained. Results show as expected that (1) co-infected classes play a role in the transmission dynamics of the disease (2) a high efficacy vaccine could effectively help mitigate the spread of co-infection with both strain 1 and 2 compared to the low-efficacy vaccine. Sensitivity analysis reveals that the main drivers of the effective reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> are primarily the effective contact rate for strain 2 (<span><math><msub><mrow><mi>β</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>), the strain 2 recovery rate (<span><math><msub><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>), and the vaccine efficacy or infection reduction due to the vaccine (<span><math><mi>η</mi></math></span>). Thus, implementing intervention measures to mitigate the spread of COVID-19 should not ignore the co-infected individuals who can potentially spread both strains of the disease.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100945"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A two-strain COVID-19 co-infection model with strain 1 vaccination\",\"authors\":\"Taqi A.M. Shatnawi ,&nbsp;Stephane Y. Tchoumi ,&nbsp;Herieth Rwezaura ,&nbsp;Khalid Dib ,&nbsp;Jean M. Tchuenche ,&nbsp;Mo’tassem Al-arydah\",\"doi\":\"10.1016/j.padiff.2024.100945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>COVID-19 has caused substantial morbidity and mortality worldwide. Previous models of strain 1 vaccination with re-infection when vaccinated, as well as infection with strain 2 did not consider co-infected classes. To fill this gap, a two co-circulating COVID-19 strains model with strain 1 vaccination, and co-infected is formulated and theoretically analyzed. Sufficient conditions for the stability of the disease-free equilibrium and single-strain 1 and -strain 2 endemic equilibria are obtained. Results show as expected that (1) co-infected classes play a role in the transmission dynamics of the disease (2) a high efficacy vaccine could effectively help mitigate the spread of co-infection with both strain 1 and 2 compared to the low-efficacy vaccine. Sensitivity analysis reveals that the main drivers of the effective reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> are primarily the effective contact rate for strain 2 (<span><math><msub><mrow><mi>β</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>), the strain 2 recovery rate (<span><math><msub><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>), and the vaccine efficacy or infection reduction due to the vaccine (<span><math><mi>η</mi></math></span>). Thus, implementing intervention measures to mitigate the spread of COVID-19 should not ignore the co-infected individuals who can potentially spread both strains of the disease.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"12 \",\"pages\":\"Article 100945\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818124003310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

COVID-19 在全球造成了大量的发病和死亡。以往的 1 号菌株疫苗接种后再感染以及 2 号菌株感染的模型没有考虑共同感染的类别。为了填补这一空白,我们建立了一个包含 1 号菌株接种和共同感染的两种共同循环 COVID-19 菌株模型,并对其进行了理论分析。得到了无病平衡和单一菌株 1 及菌株 2 流行平衡稳定的充分条件。结果如预期所示:(1) 共感染人群在疾病的传播动态中发挥了作用;(2) 与低效疫苗相比,高效疫苗可有效缓解 1 号和 2 号菌株共感染的传播。敏感性分析表明,有效繁殖数 Re 的主要驱动因素是毒株 2 的有效接触率 (β2)、毒株 2 的恢复率 (τ2) 和疫苗效力或疫苗造成的感染减少 (η)。因此,在采取干预措施以减少 COVID-19 的传播时,不应忽视合并感染者,因为他们有可能同时传播两种毒株。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A two-strain COVID-19 co-infection model with strain 1 vaccination
COVID-19 has caused substantial morbidity and mortality worldwide. Previous models of strain 1 vaccination with re-infection when vaccinated, as well as infection with strain 2 did not consider co-infected classes. To fill this gap, a two co-circulating COVID-19 strains model with strain 1 vaccination, and co-infected is formulated and theoretically analyzed. Sufficient conditions for the stability of the disease-free equilibrium and single-strain 1 and -strain 2 endemic equilibria are obtained. Results show as expected that (1) co-infected classes play a role in the transmission dynamics of the disease (2) a high efficacy vaccine could effectively help mitigate the spread of co-infection with both strain 1 and 2 compared to the low-efficacy vaccine. Sensitivity analysis reveals that the main drivers of the effective reproduction number Re are primarily the effective contact rate for strain 2 (β2), the strain 2 recovery rate (τ2), and the vaccine efficacy or infection reduction due to the vaccine (η). Thus, implementing intervention measures to mitigate the spread of COVID-19 should not ignore the co-infected individuals who can potentially spread both strains of the disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
期刊最新文献
Combined buoyancy and Marangoni convective heat transport of CNT-water nanofluid in an open chamber with influence of magnetic field and isothermal solid block Hydromagnetic blood flow through a channel of varying width bounded by porous media of finite thickness Application of the Atangana–Baleanu operator in Caputo sense for numerical solutions of the time-fractional Burgers–Fisher equation using finite difference approaches A rational optimal block hybrid method for enhanced accuracy in solving Lane–Emden equations Multi-parameter-based Box–Behnken design for optimizing energy transfer rate of Darcy–Forchheimer drag and mixed convective nanofluid flow over a permeable vertical surface with activation energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1