{"title":"在血流流体-结构相互作用模拟中有效模拟非均匀组织支撑的有效属性方法","authors":"Peishuo Wu, Chi Zhu","doi":"10.1016/j.cmpb.2024.108457","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective:</h3><div>Incorporating tissue support in fluid–structure interaction analysis of cardiovascular flows is crucial for accurately representing physiological constraints, achieving realistic vessel wall motion, and minimizing artificial oscillations. The generalized Robin boundary condition, which models tissue support with a spring-damper-type force, uses elastic and damping parameters to represent the viscoelastic behavior of perivascular tissues. Using spatially distributed parameters for tissue support, rather than uniform ones, is more realistic and aligns with the varying properties of vessel walls. However, considering the spatial distribution of both can increase the complexity of preprocessing and numerical implementation. In this work, we develop an effective property method for efficient modeling of non-uniform tissue support and quantifying the contribution of tissue support to the mechanical behaviors of vessel walls.</div></div><div><h3>Methods:</h3><div>Based on the theory of linear viscoelasticity, we derive the mathematical formulas for the effective property method, integrating the parameters of generalized Robin boundary condition into vessel wall properties. The pulse wave velocity incorporating the influence of tissue support is also analyzed. Furthermore, we modify the coupled momentum method, originally formulated for elastic problems, to account for the viscoelastic properties of the vessel wall.</div></div><div><h3>Results:</h3><div>The method is verified with three-dimensional fluid–structure interaction simulations, achieving a maximum relative error of less than 2.2% for flow rate and less than 0.7% for pressure. This method shows that tissue support parameters can be integrated into vessel wall properties, resulting in increased apparent wall stiffness and viscosity, and further changing pressure, flow rate, and wave propagation.</div></div><div><h3>Conclusion:</h3><div>In this study, we develop an effective property method for quantitatively assessing the impact of tissue support and for efficiently modeling non-uniform tissue support. Moreover, this method offers further insights into clinically measured pulse wave velocity, demonstrating that it reflects the combined influence of both vessel wall properties and tissue support.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"257 ","pages":"Article 108457"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective property method for efficient modeling of non-uniform tissue support in fluid–structure interaction simulation of blood flows\",\"authors\":\"Peishuo Wu, Chi Zhu\",\"doi\":\"10.1016/j.cmpb.2024.108457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and Objective:</h3><div>Incorporating tissue support in fluid–structure interaction analysis of cardiovascular flows is crucial for accurately representing physiological constraints, achieving realistic vessel wall motion, and minimizing artificial oscillations. The generalized Robin boundary condition, which models tissue support with a spring-damper-type force, uses elastic and damping parameters to represent the viscoelastic behavior of perivascular tissues. Using spatially distributed parameters for tissue support, rather than uniform ones, is more realistic and aligns with the varying properties of vessel walls. However, considering the spatial distribution of both can increase the complexity of preprocessing and numerical implementation. In this work, we develop an effective property method for efficient modeling of non-uniform tissue support and quantifying the contribution of tissue support to the mechanical behaviors of vessel walls.</div></div><div><h3>Methods:</h3><div>Based on the theory of linear viscoelasticity, we derive the mathematical formulas for the effective property method, integrating the parameters of generalized Robin boundary condition into vessel wall properties. The pulse wave velocity incorporating the influence of tissue support is also analyzed. Furthermore, we modify the coupled momentum method, originally formulated for elastic problems, to account for the viscoelastic properties of the vessel wall.</div></div><div><h3>Results:</h3><div>The method is verified with three-dimensional fluid–structure interaction simulations, achieving a maximum relative error of less than 2.2% for flow rate and less than 0.7% for pressure. This method shows that tissue support parameters can be integrated into vessel wall properties, resulting in increased apparent wall stiffness and viscosity, and further changing pressure, flow rate, and wave propagation.</div></div><div><h3>Conclusion:</h3><div>In this study, we develop an effective property method for quantitatively assessing the impact of tissue support and for efficiently modeling non-uniform tissue support. Moreover, this method offers further insights into clinically measured pulse wave velocity, demonstrating that it reflects the combined influence of both vessel wall properties and tissue support.</div></div>\",\"PeriodicalId\":10624,\"journal\":{\"name\":\"Computer methods and programs in biomedicine\",\"volume\":\"257 \",\"pages\":\"Article 108457\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169260724004504\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260724004504","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Effective property method for efficient modeling of non-uniform tissue support in fluid–structure interaction simulation of blood flows
Background and Objective:
Incorporating tissue support in fluid–structure interaction analysis of cardiovascular flows is crucial for accurately representing physiological constraints, achieving realistic vessel wall motion, and minimizing artificial oscillations. The generalized Robin boundary condition, which models tissue support with a spring-damper-type force, uses elastic and damping parameters to represent the viscoelastic behavior of perivascular tissues. Using spatially distributed parameters for tissue support, rather than uniform ones, is more realistic and aligns with the varying properties of vessel walls. However, considering the spatial distribution of both can increase the complexity of preprocessing and numerical implementation. In this work, we develop an effective property method for efficient modeling of non-uniform tissue support and quantifying the contribution of tissue support to the mechanical behaviors of vessel walls.
Methods:
Based on the theory of linear viscoelasticity, we derive the mathematical formulas for the effective property method, integrating the parameters of generalized Robin boundary condition into vessel wall properties. The pulse wave velocity incorporating the influence of tissue support is also analyzed. Furthermore, we modify the coupled momentum method, originally formulated for elastic problems, to account for the viscoelastic properties of the vessel wall.
Results:
The method is verified with three-dimensional fluid–structure interaction simulations, achieving a maximum relative error of less than 2.2% for flow rate and less than 0.7% for pressure. This method shows that tissue support parameters can be integrated into vessel wall properties, resulting in increased apparent wall stiffness and viscosity, and further changing pressure, flow rate, and wave propagation.
Conclusion:
In this study, we develop an effective property method for quantitatively assessing the impact of tissue support and for efficiently modeling non-uniform tissue support. Moreover, this method offers further insights into clinically measured pulse wave velocity, demonstrating that it reflects the combined influence of both vessel wall properties and tissue support.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.