Ruihao Zhao , Weifeng Chai , Yang Zhang , Xiang Yuan , Zisheng Lian , Huiting Shi
{"title":"由高速开关阀控制的带位移反馈槽的新型比例换向阀的动力学和实验研究","authors":"Ruihao Zhao , Weifeng Chai , Yang Zhang , Xiang Yuan , Zisheng Lian , Huiting Shi","doi":"10.1016/j.flowmeasinst.2024.102711","DOIUrl":null,"url":null,"abstract":"<div><div>The intelligence of hydraulic roof support is an important guarantee for unmanned fully mechanized coal mining face. The water-based medium proportional directional valve is the main factor that restricts the intelligent realization of support system. The support control valve needs to meet the 2/3 (two-position three-way) structure, taking into account both manual and electro-hydraulic control functions. The current water-based proportional valve does not satisfy the structural or functional demands of the support system. In this paper, a novel 2/3 water-based proportional directional valve is presented based on the displacement-flow feedback principle, which has two control modes: manual on-off control and electro-hydraulic proportional control. The proportional valve comprises two main valve spools and two pilot valves. The pilot valve is composed of a 2/3 on-off valve with manual operation capability and a high-speed switching valve group controlled by PWM (Pulse Width Modulation). The mathematical model of the proportional valve is established, and the experimental system is built to verify the characteristics of proportional valve. The proportional valve can meet the special functional requirements of the support. In the proportional control mode, the adjustment of spool displacement is regulated through the modulation of PWM duty ratio, resulting in effective control performance of the proportional valve. Furthermore, the discontinuous flow of the high-speed switching valve causes the pressure fluctuation of the pilot hydraulic bridge. Increasing the carrier frequency of PWM can reduce the amplitude of control chamber pressure and spool displacement fluctuation. The findings of the study can offer valuable insights for the continued advancement and enhancement of water-based proportional valves used in hydraulic roof support systems.</div></div>","PeriodicalId":50440,"journal":{"name":"Flow Measurement and Instrumentation","volume":"100 ","pages":"Article 102711"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics and experimental study of a novel proportional directional valve with displacement feedback groove controlled by high-speed switching valves\",\"authors\":\"Ruihao Zhao , Weifeng Chai , Yang Zhang , Xiang Yuan , Zisheng Lian , Huiting Shi\",\"doi\":\"10.1016/j.flowmeasinst.2024.102711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The intelligence of hydraulic roof support is an important guarantee for unmanned fully mechanized coal mining face. The water-based medium proportional directional valve is the main factor that restricts the intelligent realization of support system. The support control valve needs to meet the 2/3 (two-position three-way) structure, taking into account both manual and electro-hydraulic control functions. The current water-based proportional valve does not satisfy the structural or functional demands of the support system. In this paper, a novel 2/3 water-based proportional directional valve is presented based on the displacement-flow feedback principle, which has two control modes: manual on-off control and electro-hydraulic proportional control. The proportional valve comprises two main valve spools and two pilot valves. The pilot valve is composed of a 2/3 on-off valve with manual operation capability and a high-speed switching valve group controlled by PWM (Pulse Width Modulation). The mathematical model of the proportional valve is established, and the experimental system is built to verify the characteristics of proportional valve. The proportional valve can meet the special functional requirements of the support. In the proportional control mode, the adjustment of spool displacement is regulated through the modulation of PWM duty ratio, resulting in effective control performance of the proportional valve. Furthermore, the discontinuous flow of the high-speed switching valve causes the pressure fluctuation of the pilot hydraulic bridge. Increasing the carrier frequency of PWM can reduce the amplitude of control chamber pressure and spool displacement fluctuation. The findings of the study can offer valuable insights for the continued advancement and enhancement of water-based proportional valves used in hydraulic roof support systems.</div></div>\",\"PeriodicalId\":50440,\"journal\":{\"name\":\"Flow Measurement and Instrumentation\",\"volume\":\"100 \",\"pages\":\"Article 102711\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow Measurement and Instrumentation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955598624001912\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow Measurement and Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955598624001912","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Dynamics and experimental study of a novel proportional directional valve with displacement feedback groove controlled by high-speed switching valves
The intelligence of hydraulic roof support is an important guarantee for unmanned fully mechanized coal mining face. The water-based medium proportional directional valve is the main factor that restricts the intelligent realization of support system. The support control valve needs to meet the 2/3 (two-position three-way) structure, taking into account both manual and electro-hydraulic control functions. The current water-based proportional valve does not satisfy the structural or functional demands of the support system. In this paper, a novel 2/3 water-based proportional directional valve is presented based on the displacement-flow feedback principle, which has two control modes: manual on-off control and electro-hydraulic proportional control. The proportional valve comprises two main valve spools and two pilot valves. The pilot valve is composed of a 2/3 on-off valve with manual operation capability and a high-speed switching valve group controlled by PWM (Pulse Width Modulation). The mathematical model of the proportional valve is established, and the experimental system is built to verify the characteristics of proportional valve. The proportional valve can meet the special functional requirements of the support. In the proportional control mode, the adjustment of spool displacement is regulated through the modulation of PWM duty ratio, resulting in effective control performance of the proportional valve. Furthermore, the discontinuous flow of the high-speed switching valve causes the pressure fluctuation of the pilot hydraulic bridge. Increasing the carrier frequency of PWM can reduce the amplitude of control chamber pressure and spool displacement fluctuation. The findings of the study can offer valuable insights for the continued advancement and enhancement of water-based proportional valves used in hydraulic roof support systems.
期刊介绍:
Flow Measurement and Instrumentation is dedicated to disseminating the latest research results on all aspects of flow measurement, in both closed conduits and open channels. The design of flow measurement systems involves a wide variety of multidisciplinary activities including modelling the flow sensor, the fluid flow and the sensor/fluid interactions through the use of computation techniques; the development of advanced transducer systems and their associated signal processing and the laboratory and field assessment of the overall system under ideal and disturbed conditions.
FMI is the essential forum for critical information exchange, and contributions are particularly encouraged in the following areas of interest:
Modelling: the application of mathematical and computational modelling to the interaction of fluid dynamics with flowmeters, including flowmeter behaviour, improved flowmeter design and installation problems. Application of CAD/CAE techniques to flowmeter modelling are eligible.
Design and development: the detailed design of the flowmeter head and/or signal processing aspects of novel flowmeters. Emphasis is given to papers identifying new sensor configurations, multisensor flow measurement systems, non-intrusive flow metering techniques and the application of microelectronic techniques in smart or intelligent systems.
Calibration techniques: including descriptions of new or existing calibration facilities and techniques, calibration data from different flowmeter types, and calibration intercomparison data from different laboratories.
Installation effect data: dealing with the effects of non-ideal flow conditions on flowmeters. Papers combining a theoretical understanding of flowmeter behaviour with experimental work are particularly welcome.