{"title":"利用轴向空气导流板增强轴流式空气冷却电机的冷却效果","authors":"Ziyi Xu;Yongming Xu;Yanbo Wang;Yaodong Wang","doi":"10.1109/TASC.2024.3468073","DOIUrl":null,"url":null,"abstract":"This paper presents a proposal for the implementation of an axial air deflector in order to enhance the cooling capabilities of an axially forced air-cooled motor. The prediction of global fluid-thermal characteristics is carried out using the numerical analysis method. The obtained calculations are validated using experiments, with a relative error of 4.4% observed between the simulated and measured values. The present study focuses on investigating the cooling enhancement mechanism of the axial air deflector through numerical analysis and subsequently validating its effectiveness in enhancing cooling. Furthermore, an analysis was conducted to examine the correlation between the geometric parameters of the axial air deflector and its ability to enhance cooling. Upon the installation of the axial air deflector, notable enhancements are observed in the fluid flow condition within the end space. Consequently, the stator winding experiences a reduction in both the maximum temperature rise and average temperature rise, amounting to 2.5 K and 1.7 K, respectively.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"34 8","pages":"1-5"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cooling Enhancement of an Axially Forced Air-Cooled Motors Using Axial Air Deflector\",\"authors\":\"Ziyi Xu;Yongming Xu;Yanbo Wang;Yaodong Wang\",\"doi\":\"10.1109/TASC.2024.3468073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a proposal for the implementation of an axial air deflector in order to enhance the cooling capabilities of an axially forced air-cooled motor. The prediction of global fluid-thermal characteristics is carried out using the numerical analysis method. The obtained calculations are validated using experiments, with a relative error of 4.4% observed between the simulated and measured values. The present study focuses on investigating the cooling enhancement mechanism of the axial air deflector through numerical analysis and subsequently validating its effectiveness in enhancing cooling. Furthermore, an analysis was conducted to examine the correlation between the geometric parameters of the axial air deflector and its ability to enhance cooling. Upon the installation of the axial air deflector, notable enhancements are observed in the fluid flow condition within the end space. Consequently, the stator winding experiences a reduction in both the maximum temperature rise and average temperature rise, amounting to 2.5 K and 1.7 K, respectively.\",\"PeriodicalId\":13104,\"journal\":{\"name\":\"IEEE Transactions on Applied Superconductivity\",\"volume\":\"34 8\",\"pages\":\"1-5\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Applied Superconductivity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10693529/\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10693529/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了一种实施轴向空气导流板的建议,以增强轴向强制风冷电机的冷却能力。本文采用数值分析方法对全局流体-热特性进行了预测。实验验证了计算结果,发现模拟值和测量值之间的相对误差为 4.4%。本研究的重点是通过数值分析研究轴向空气导流板的冷却增强机制,并随后验证其在增强冷却方面的有效性。此外,还分析了轴向空气导流板的几何参数与其增强冷却能力之间的相关性。安装轴向空气导流板后,端部空间内的流体流动状况明显改善。因此,定子绕组的最大温升和平均温升分别降低了 2.5 K 和 1.7 K。
Cooling Enhancement of an Axially Forced Air-Cooled Motors Using Axial Air Deflector
This paper presents a proposal for the implementation of an axial air deflector in order to enhance the cooling capabilities of an axially forced air-cooled motor. The prediction of global fluid-thermal characteristics is carried out using the numerical analysis method. The obtained calculations are validated using experiments, with a relative error of 4.4% observed between the simulated and measured values. The present study focuses on investigating the cooling enhancement mechanism of the axial air deflector through numerical analysis and subsequently validating its effectiveness in enhancing cooling. Furthermore, an analysis was conducted to examine the correlation between the geometric parameters of the axial air deflector and its ability to enhance cooling. Upon the installation of the axial air deflector, notable enhancements are observed in the fluid flow condition within the end space. Consequently, the stator winding experiences a reduction in both the maximum temperature rise and average temperature rise, amounting to 2.5 K and 1.7 K, respectively.
期刊介绍:
IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.