燃煤电厂燃煤粉尘中碳点的形成机理和荧光特性

IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Photonics Research Pub Date : 2024-09-02 DOI:10.1002/adpr.202400010
Zhexian Zhao, Weizuo Zhang, Jin Zhang, Yuzhao Li, Han Bai, Fangming Zhao, Zhongcai Jin, Ju Tang, Yiming Xiao, Wen Xu, Yanfei Lü
{"title":"燃煤电厂燃煤粉尘中碳点的形成机理和荧光特性","authors":"Zhexian Zhao,&nbsp;Weizuo Zhang,&nbsp;Jin Zhang,&nbsp;Yuzhao Li,&nbsp;Han Bai,&nbsp;Fangming Zhao,&nbsp;Zhongcai Jin,&nbsp;Ju Tang,&nbsp;Yiming Xiao,&nbsp;Wen Xu,&nbsp;Yanfei Lü","doi":"10.1002/adpr.202400010","DOIUrl":null,"url":null,"abstract":"<p>Carbon dots (CDs) show great application potential with their unique and excellent performances. Coal and its derivatives are rich in aromatic ring structure, which is suitable for preparing CDs in microstructure. Coal-burning dust from coal-fired power plants can be utilized as a rich resource to separate and extract CDs. It is shown in the results that there are two main possible mechanisms for the formation of CDs in coal-burning dust. One is the self-assembly of polycyclic aromatic hydrocarbons contained in coal or produced by incomplete combustion of coal. The other mechanism is that the bridge bonds linking different aromatic structures in coal break, which will form CDs with different functional groups when the coals burn at high temperature. Under violet light excitation at 310–340 nm or red light at 610–640 nm, CDs extracted from coal-burning dust can emit purple fluorescence around 410 nm. The mechanism of up-conversion fluorescence emission of CDs is due to a two-photon absorption process. The recycling of CDs from coal-burning dust from coal-fired power plants are not only good to protect environment but will also be helpful for mass production of CDs.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400010","citationCount":"0","resultStr":"{\"title\":\"Formation Mechanisms and Fluorescence Properties of Carbon Dots in Coal Burning Dust from Coal-Fired Power Plants\",\"authors\":\"Zhexian Zhao,&nbsp;Weizuo Zhang,&nbsp;Jin Zhang,&nbsp;Yuzhao Li,&nbsp;Han Bai,&nbsp;Fangming Zhao,&nbsp;Zhongcai Jin,&nbsp;Ju Tang,&nbsp;Yiming Xiao,&nbsp;Wen Xu,&nbsp;Yanfei Lü\",\"doi\":\"10.1002/adpr.202400010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Carbon dots (CDs) show great application potential with their unique and excellent performances. Coal and its derivatives are rich in aromatic ring structure, which is suitable for preparing CDs in microstructure. Coal-burning dust from coal-fired power plants can be utilized as a rich resource to separate and extract CDs. It is shown in the results that there are two main possible mechanisms for the formation of CDs in coal-burning dust. One is the self-assembly of polycyclic aromatic hydrocarbons contained in coal or produced by incomplete combustion of coal. The other mechanism is that the bridge bonds linking different aromatic structures in coal break, which will form CDs with different functional groups when the coals burn at high temperature. Under violet light excitation at 310–340 nm or red light at 610–640 nm, CDs extracted from coal-burning dust can emit purple fluorescence around 410 nm. The mechanism of up-conversion fluorescence emission of CDs is due to a two-photon absorption process. The recycling of CDs from coal-burning dust from coal-fired power plants are not only good to protect environment but will also be helpful for mass production of CDs.</p>\",\"PeriodicalId\":7263,\"journal\":{\"name\":\"Advanced Photonics Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400010\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

碳点(CD)以其独特而优异的性能显示出巨大的应用潜力。煤及其衍生物富含芳香环结构,适合制备微结构的碳点。燃煤电厂的燃煤粉尘是分离和提取 CD 的丰富资源。研究结果表明,燃煤粉尘中 CD 的形成可能有两种主要机制。一种是煤中含有的或煤不完全燃烧产生的多环芳烃的自组装。另一种机制是煤炭中连接不同芳香结构的桥键断裂,在高温燃烧时会形成具有不同官能团的 CD。在波长为 310-340 纳米的紫光或波长为 610-640 纳米的红光激发下,从燃煤粉尘中提取的 CD 可在波长为 410 纳米左右发出紫色荧光。CD 上转换荧光发射的机理是双光子吸收过程。从燃煤电厂的燃煤粉尘中回收 CD 不仅有利于保护环境,还有助于大规模生产 CD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Formation Mechanisms and Fluorescence Properties of Carbon Dots in Coal Burning Dust from Coal-Fired Power Plants

Carbon dots (CDs) show great application potential with their unique and excellent performances. Coal and its derivatives are rich in aromatic ring structure, which is suitable for preparing CDs in microstructure. Coal-burning dust from coal-fired power plants can be utilized as a rich resource to separate and extract CDs. It is shown in the results that there are two main possible mechanisms for the formation of CDs in coal-burning dust. One is the self-assembly of polycyclic aromatic hydrocarbons contained in coal or produced by incomplete combustion of coal. The other mechanism is that the bridge bonds linking different aromatic structures in coal break, which will form CDs with different functional groups when the coals burn at high temperature. Under violet light excitation at 310–340 nm or red light at 610–640 nm, CDs extracted from coal-burning dust can emit purple fluorescence around 410 nm. The mechanism of up-conversion fluorescence emission of CDs is due to a two-photon absorption process. The recycling of CDs from coal-burning dust from coal-fired power plants are not only good to protect environment but will also be helpful for mass production of CDs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
2.70%
发文量
0
期刊最新文献
Masthead Structural Colors Derived from the Combination of Core–Shell Particles with Cellulose Ultrafast Terahertz Superconductor Van der Waals Metamaterial Photonic Switch Masthead Progress on Coherent Perovskites Emitters: From Light-Emitting Diodes under High Current Density Operation to Laser Diodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1