推断西欧地表 NO2:带有不确定性量化的机器学习方法

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Geophysical Research: Atmospheres Pub Date : 2024-10-15 DOI:10.1029/2023JD040676
Wenfu Sun, Frederik Tack, Lieven Clarisse, Rochelle Schneider, Trissevgeni Stavrakou, Michel Van Roozendael
{"title":"推断西欧地表 NO2:带有不确定性量化的机器学习方法","authors":"Wenfu Sun,&nbsp;Frederik Tack,&nbsp;Lieven Clarisse,&nbsp;Rochelle Schneider,&nbsp;Trissevgeni Stavrakou,&nbsp;Michel Van Roozendael","doi":"10.1029/2023JD040676","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Nitrogen oxides (NO<sub>x</sub> = NO + NO<sub>2</sub>) are of great concern due to their impact on human health and the environment. In recent years, machine learning (ML) techniques have been widely used for surface NO<sub>2</sub> estimation with rapid developments in computational power and big data. However, the uncertainties inherent to such retrievals are rarely studied. In this study, a novel ML framework has been developed, enhanced with uncertainty quantification techniques, to estimate surface NO<sub>2</sub> and provide corresponding data-induced uncertainty. We apply the Boosting Ensemble Conformal Quantile Estimator (BEnCQE) model to infer surface NO<sub>2</sub> concentrations over Western Europe at the daily scale and 1 km spatial resolution from May 2018 to December 2021. High NO<sub>2</sub> mainly appears in urban areas, industrial areas, and roads. The space-based cross-validation shows that our model achieves accurate point estimates (<i>r</i> = 0.8, <i>R</i><sup>2</sup> = 0.64, root mean square error = 8.08 μg/m<sup>3</sup>) and reliable prediction intervals (coverage probability, PI-50%: 51.0%, PI-90%: 90.5%). Also, the model result agrees with the Copernicus Atmosphere Monitoring Service (CAMS) model. The quantile regression in our model enables us to understand the importance of predictors for different NO<sub>2</sub> level estimations. Additionally, the uncertainty information reveals the extra potential exceedance of the World Health Organization (WHO) 2021 limit in some locations, which is undetectable by only point estimates. Meanwhile, the uncertainty quantification allows assessment of the model's robustness outside existing in-situ station measurements. It reveals challenges of NO<sub>2</sub> estimation over urban and mountainous areas where NO<sub>2</sub> is highly variable and heterogeneously distributed.</p>\n </section>\n </div>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"129 20","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JD040676","citationCount":"0","resultStr":"{\"title\":\"Inferring Surface NO2 Over Western Europe: A Machine Learning Approach With Uncertainty Quantification\",\"authors\":\"Wenfu Sun,&nbsp;Frederik Tack,&nbsp;Lieven Clarisse,&nbsp;Rochelle Schneider,&nbsp;Trissevgeni Stavrakou,&nbsp;Michel Van Roozendael\",\"doi\":\"10.1029/2023JD040676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>Nitrogen oxides (NO<sub>x</sub> = NO + NO<sub>2</sub>) are of great concern due to their impact on human health and the environment. In recent years, machine learning (ML) techniques have been widely used for surface NO<sub>2</sub> estimation with rapid developments in computational power and big data. However, the uncertainties inherent to such retrievals are rarely studied. In this study, a novel ML framework has been developed, enhanced with uncertainty quantification techniques, to estimate surface NO<sub>2</sub> and provide corresponding data-induced uncertainty. We apply the Boosting Ensemble Conformal Quantile Estimator (BEnCQE) model to infer surface NO<sub>2</sub> concentrations over Western Europe at the daily scale and 1 km spatial resolution from May 2018 to December 2021. High NO<sub>2</sub> mainly appears in urban areas, industrial areas, and roads. The space-based cross-validation shows that our model achieves accurate point estimates (<i>r</i> = 0.8, <i>R</i><sup>2</sup> = 0.64, root mean square error = 8.08 μg/m<sup>3</sup>) and reliable prediction intervals (coverage probability, PI-50%: 51.0%, PI-90%: 90.5%). Also, the model result agrees with the Copernicus Atmosphere Monitoring Service (CAMS) model. The quantile regression in our model enables us to understand the importance of predictors for different NO<sub>2</sub> level estimations. Additionally, the uncertainty information reveals the extra potential exceedance of the World Health Organization (WHO) 2021 limit in some locations, which is undetectable by only point estimates. Meanwhile, the uncertainty quantification allows assessment of the model's robustness outside existing in-situ station measurements. It reveals challenges of NO<sub>2</sub> estimation over urban and mountainous areas where NO<sub>2</sub> is highly variable and heterogeneously distributed.</p>\\n </section>\\n </div>\",\"PeriodicalId\":15986,\"journal\":{\"name\":\"Journal of Geophysical Research: Atmospheres\",\"volume\":\"129 20\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JD040676\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Atmospheres\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023JD040676\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JD040676","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

氮氧化物(NOx = NO + NO2)因其对人类健康和环境的影响而备受关注。近年来,随着计算能力和大数据的快速发展,机器学习(ML)技术被广泛用于地表二氧化氮的估算。然而,人们很少研究此类检索所固有的不确定性。本研究开发了一种新颖的 ML 框架,并采用不确定性量化技术对其进行增强,以估算地表 NO2 并提供相应的数据引起的不确定性。我们应用提升集合共形量子估计器(BEnCQE)模型,以日尺度和 1 千米空间分辨率推断了 2018 年 5 月至 2021 年 12 月西欧的地表 NO2 浓度。高二氧化氮主要出现在城市地区、工业区和道路上。基于空间的交叉验证表明,我们的模型实现了准确的点估计(r = 0.8,R2 = 0.64,均方根误差 = 8.08 μg/m3)和可靠的预测区间(覆盖概率,PI-50%:51.0%,PI-90%:90.5%)。此外,模型结果与哥白尼大气监测服务(CAMS)模型一致。模型中的量子回归使我们能够了解不同二氧化氮水平估算中预测因子的重要性。此外,不确定性信息还揭示了某些地点可能超出世界卫生组织(WHO)2021 年限值的额外情况,而仅通过点估算是无法检测到这一情况的。同时,通过不确定性量化,可以评估模型在现有现场站点测量之外的稳健性。它揭示了城市和山区二氧化氮估算所面临的挑战,因为这些地区的二氧化氮变化很大且分布不均。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inferring Surface NO2 Over Western Europe: A Machine Learning Approach With Uncertainty Quantification

Nitrogen oxides (NOx = NO + NO2) are of great concern due to their impact on human health and the environment. In recent years, machine learning (ML) techniques have been widely used for surface NO2 estimation with rapid developments in computational power and big data. However, the uncertainties inherent to such retrievals are rarely studied. In this study, a novel ML framework has been developed, enhanced with uncertainty quantification techniques, to estimate surface NO2 and provide corresponding data-induced uncertainty. We apply the Boosting Ensemble Conformal Quantile Estimator (BEnCQE) model to infer surface NO2 concentrations over Western Europe at the daily scale and 1 km spatial resolution from May 2018 to December 2021. High NO2 mainly appears in urban areas, industrial areas, and roads. The space-based cross-validation shows that our model achieves accurate point estimates (r = 0.8, R2 = 0.64, root mean square error = 8.08 μg/m3) and reliable prediction intervals (coverage probability, PI-50%: 51.0%, PI-90%: 90.5%). Also, the model result agrees with the Copernicus Atmosphere Monitoring Service (CAMS) model. The quantile regression in our model enables us to understand the importance of predictors for different NO2 level estimations. Additionally, the uncertainty information reveals the extra potential exceedance of the World Health Organization (WHO) 2021 limit in some locations, which is undetectable by only point estimates. Meanwhile, the uncertainty quantification allows assessment of the model's robustness outside existing in-situ station measurements. It reveals challenges of NO2 estimation over urban and mountainous areas where NO2 is highly variable and heterogeneously distributed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
期刊最新文献
Analysis of the Influence of Clear-Sky Fluxes on the Cloud-Type Mean Cloud Radiative Effects in the Tropical Convectively Active Regions With CERES Satellite Data A Simple Model for the Evaporation of Hydrometeors and Their Isotopes Modeling the Effects of Vegetation and Snow on Dust Storm Over the Gobi Desert Origins of Extreme CAPE Around the World A More Transparent Infrared Window
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1