Yuanyuan Zhou, Yujia Luo, Wenshan Zeng, Luna Mao, Fang Le, Hangying Lou, Liya Wang, Yuchan Mao, Zhou Jiang, Fan Jin
{"title":"通过综合生物信息学和孟德尔随机分析,将 FANCD2 作为复发性植入失败的铁突变相关靶点","authors":"Yuanyuan Zhou, Yujia Luo, Wenshan Zeng, Luna Mao, Fang Le, Hangying Lou, Liya Wang, Yuchan Mao, Zhou Jiang, Fan Jin","doi":"10.1111/jcmm.70119","DOIUrl":null,"url":null,"abstract":"<p>Despite advancements in assisted reproductive technology, recurrent implantation failure (RIF) remains a challenge. Endometrial factors, including ferroptosis and immunity, may contribute to this issue. This study integrated bioinformatics analysis and Mendelian randomization (MR) to investigate the expression and significance of DEFRGs in RIF. We intersected 484 ferroptosis-associated genes with 515 differentially expressed genes (DEGs) to identify key DEFRGs. Subsequent analyses included enrichment analysis, molecular subtype identification, machine learning model development for biomarker discovery, immune cell infiltration assessment, single-cell RNA sequencing, and MR to explore the causal relationships of selected genes with RIF. In this study, we identified 11 differentially expressed ferroptosis-related genes (DEFRGs) between RIF and healthy individuals. Cluster analysis revealed two distinct molecular subtypes with different immune profiles and DEFRG expressions. Machine learning models highlighted MUC1, GJA1 and FANCD2 as potential diagnostic biomarkers, with high accuracy in RIF prediction. Single-cell analysis further revealed the cellular localization and interactions of DEFRGs. MR suggested a protective effect of FANCD2 against RIF. Validation in RIF patients confirmed the differential expression of key DEFRGs, consistent with bioinformatics findings. This comprehensive study emphasize the significant role of DEFRGs in the pathogenesis of RIF, suggesting that modulating these genes could offer new avenues for treatment. The FANCD2 is a potential gene contributing to RIF pathogenesis through a non-classical ferroptosis-dependent pathway, providing a foundation for personalized therapeutic strategies in RIF management.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"28 19","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70119","citationCount":"0","resultStr":"{\"title\":\"FANCD2 as a ferroptosis-related target for recurrent implantation failure by integrated bioinformatics and Mendelian randomization analysis\",\"authors\":\"Yuanyuan Zhou, Yujia Luo, Wenshan Zeng, Luna Mao, Fang Le, Hangying Lou, Liya Wang, Yuchan Mao, Zhou Jiang, Fan Jin\",\"doi\":\"10.1111/jcmm.70119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite advancements in assisted reproductive technology, recurrent implantation failure (RIF) remains a challenge. Endometrial factors, including ferroptosis and immunity, may contribute to this issue. This study integrated bioinformatics analysis and Mendelian randomization (MR) to investigate the expression and significance of DEFRGs in RIF. We intersected 484 ferroptosis-associated genes with 515 differentially expressed genes (DEGs) to identify key DEFRGs. Subsequent analyses included enrichment analysis, molecular subtype identification, machine learning model development for biomarker discovery, immune cell infiltration assessment, single-cell RNA sequencing, and MR to explore the causal relationships of selected genes with RIF. In this study, we identified 11 differentially expressed ferroptosis-related genes (DEFRGs) between RIF and healthy individuals. Cluster analysis revealed two distinct molecular subtypes with different immune profiles and DEFRG expressions. Machine learning models highlighted MUC1, GJA1 and FANCD2 as potential diagnostic biomarkers, with high accuracy in RIF prediction. Single-cell analysis further revealed the cellular localization and interactions of DEFRGs. MR suggested a protective effect of FANCD2 against RIF. Validation in RIF patients confirmed the differential expression of key DEFRGs, consistent with bioinformatics findings. This comprehensive study emphasize the significant role of DEFRGs in the pathogenesis of RIF, suggesting that modulating these genes could offer new avenues for treatment. The FANCD2 is a potential gene contributing to RIF pathogenesis through a non-classical ferroptosis-dependent pathway, providing a foundation for personalized therapeutic strategies in RIF management.</p>\",\"PeriodicalId\":101321,\"journal\":{\"name\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"volume\":\"28 19\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70119\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FANCD2 as a ferroptosis-related target for recurrent implantation failure by integrated bioinformatics and Mendelian randomization analysis
Despite advancements in assisted reproductive technology, recurrent implantation failure (RIF) remains a challenge. Endometrial factors, including ferroptosis and immunity, may contribute to this issue. This study integrated bioinformatics analysis and Mendelian randomization (MR) to investigate the expression and significance of DEFRGs in RIF. We intersected 484 ferroptosis-associated genes with 515 differentially expressed genes (DEGs) to identify key DEFRGs. Subsequent analyses included enrichment analysis, molecular subtype identification, machine learning model development for biomarker discovery, immune cell infiltration assessment, single-cell RNA sequencing, and MR to explore the causal relationships of selected genes with RIF. In this study, we identified 11 differentially expressed ferroptosis-related genes (DEFRGs) between RIF and healthy individuals. Cluster analysis revealed two distinct molecular subtypes with different immune profiles and DEFRG expressions. Machine learning models highlighted MUC1, GJA1 and FANCD2 as potential diagnostic biomarkers, with high accuracy in RIF prediction. Single-cell analysis further revealed the cellular localization and interactions of DEFRGs. MR suggested a protective effect of FANCD2 against RIF. Validation in RIF patients confirmed the differential expression of key DEFRGs, consistent with bioinformatics findings. This comprehensive study emphasize the significant role of DEFRGs in the pathogenesis of RIF, suggesting that modulating these genes could offer new avenues for treatment. The FANCD2 is a potential gene contributing to RIF pathogenesis through a non-classical ferroptosis-dependent pathway, providing a foundation for personalized therapeutic strategies in RIF management.
期刊介绍:
The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries.
It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.