{"title":"轨道转换任务中全尺寸柔性电动太阳风帆航天器的轨道-高度耦合控制框架","authors":"Shengjun Zeng, Wei Fan, Hui Ren","doi":"10.1016/j.ast.2024.109655","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a novel orbital-attitude coupled control framework is developed for the electric solar wind sail (E-sail) spacecraft, aiming to handle the orbital transformation and attitude maneuver simultaneously. In the framework, the desired attitude parameters and the slow-varying voltage component are provided by the orbital control strategy, while the current attitude parameters and the fast-varying voltage component are manipulated by the attitude control strategy to approach their desired values. The orbital-attitude coupled characteristics of the E-sail spacecraft, including the flexibility-induced coupling effect, are fully described by the referenced nodal coordinate formulation. Considering the input saturation conditions, the governing equation for the orbital control strategy is then derived, in which the in-plane and out-of-plane displacement and velocity errors are prescribed as the state variables to be eliminated. An integral sliding mode control (ISMC) scheme is proposed to improve the robustness against the unmeasurable disturbance term. A model predictive control (MPC) scheme is introduced to enhance the convergence efficiency, where a quadratic optimization is performed to plan the desired attitude parameters and voltage components within the prediction horizon. To evaluate the control performance in the orbital transformation and attitude maneuver missions on the displaced non-Keplerian orbit, a series of scenarios with complex initial conditions are simulated under different control schemes, including the ISMC-MPC compound scheme. The results show that the control strategy designed under the rigid-body assumptions may not be feasible for the flexible E-sail spacecraft, while the investigated control strategy realizes the accurate and efficient convergence of the orbital and attitude variables on both the rigid and flexible E-sail spacecraft with the tether deformation stabilized.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109655"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An orbital-attitude coupled control framework for a full-scale flexible electric solar wind sail spacecraft in orbital transformation missions\",\"authors\":\"Shengjun Zeng, Wei Fan, Hui Ren\",\"doi\":\"10.1016/j.ast.2024.109655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, a novel orbital-attitude coupled control framework is developed for the electric solar wind sail (E-sail) spacecraft, aiming to handle the orbital transformation and attitude maneuver simultaneously. In the framework, the desired attitude parameters and the slow-varying voltage component are provided by the orbital control strategy, while the current attitude parameters and the fast-varying voltage component are manipulated by the attitude control strategy to approach their desired values. The orbital-attitude coupled characteristics of the E-sail spacecraft, including the flexibility-induced coupling effect, are fully described by the referenced nodal coordinate formulation. Considering the input saturation conditions, the governing equation for the orbital control strategy is then derived, in which the in-plane and out-of-plane displacement and velocity errors are prescribed as the state variables to be eliminated. An integral sliding mode control (ISMC) scheme is proposed to improve the robustness against the unmeasurable disturbance term. A model predictive control (MPC) scheme is introduced to enhance the convergence efficiency, where a quadratic optimization is performed to plan the desired attitude parameters and voltage components within the prediction horizon. To evaluate the control performance in the orbital transformation and attitude maneuver missions on the displaced non-Keplerian orbit, a series of scenarios with complex initial conditions are simulated under different control schemes, including the ISMC-MPC compound scheme. The results show that the control strategy designed under the rigid-body assumptions may not be feasible for the flexible E-sail spacecraft, while the investigated control strategy realizes the accurate and efficient convergence of the orbital and attitude variables on both the rigid and flexible E-sail spacecraft with the tether deformation stabilized.</div></div>\",\"PeriodicalId\":50955,\"journal\":{\"name\":\"Aerospace Science and Technology\",\"volume\":\"155 \",\"pages\":\"Article 109655\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1270963824007843\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824007843","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
An orbital-attitude coupled control framework for a full-scale flexible electric solar wind sail spacecraft in orbital transformation missions
In this work, a novel orbital-attitude coupled control framework is developed for the electric solar wind sail (E-sail) spacecraft, aiming to handle the orbital transformation and attitude maneuver simultaneously. In the framework, the desired attitude parameters and the slow-varying voltage component are provided by the orbital control strategy, while the current attitude parameters and the fast-varying voltage component are manipulated by the attitude control strategy to approach their desired values. The orbital-attitude coupled characteristics of the E-sail spacecraft, including the flexibility-induced coupling effect, are fully described by the referenced nodal coordinate formulation. Considering the input saturation conditions, the governing equation for the orbital control strategy is then derived, in which the in-plane and out-of-plane displacement and velocity errors are prescribed as the state variables to be eliminated. An integral sliding mode control (ISMC) scheme is proposed to improve the robustness against the unmeasurable disturbance term. A model predictive control (MPC) scheme is introduced to enhance the convergence efficiency, where a quadratic optimization is performed to plan the desired attitude parameters and voltage components within the prediction horizon. To evaluate the control performance in the orbital transformation and attitude maneuver missions on the displaced non-Keplerian orbit, a series of scenarios with complex initial conditions are simulated under different control schemes, including the ISMC-MPC compound scheme. The results show that the control strategy designed under the rigid-body assumptions may not be feasible for the flexible E-sail spacecraft, while the investigated control strategy realizes the accurate and efficient convergence of the orbital and attitude variables on both the rigid and flexible E-sail spacecraft with the tether deformation stabilized.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.