Z.A. Alrowaili , Jamila S. Alzahrani , Canel Eke , I.O. Olarinoye , Sultan Alomairy , M.S. Al-Buriahi
{"title":"Se95-xIn5Prx 金属合金的光学透射率、介电常数和伽马屏蔽性能:辐射防护应用","authors":"Z.A. Alrowaili , Jamila S. Alzahrani , Canel Eke , I.O. Olarinoye , Sultan Alomairy , M.S. Al-Buriahi","doi":"10.1016/j.jrras.2024.101147","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the high density of metals, metallic materials such as alloys have the potential to have high gamma-radiation-absorbing abilities. This would make them relevant in a radiation environment as either a shielding material or a radiation sensor. These would, however, depend on their gamma radiation responses. Research aimed at evaluating the gamma response parameters of different glassy alloys that have technical applications is scarce compared to the traditional characterization with respect to optical features, structural evolution, and mechanical strength. In this paper, the optical and radiation shielding abilities of Se95-xIn5Prx (x = 2, 4, and 6) glassy alloys were investigated using standard theoretical techniques. The mass attenuation coefficient (MAC) of the materials was computed using the XCOM software. Reflection loss values are 0.20218, 0.22634, and 0.22908 for SIPr1, SIPr2, and SIPr3, respectively, while the optical transmittance values are 0.66365, 0.63087, and 0.62723 in the same order. The metallization criterion declined when Pr increased in the alloy. The values of MAC ranged from 0.0317 cm<sup>2</sup>/g to 98.2099 cm<sup>2</sup>/g for SIPr1, 0.0319 cm<sup>2</sup>/g to 97.3798 cm<sup>2</sup>/g for SIPr2 and 0.0322 cm<sup>2</sup>/g to 96.5372 cm<sup>2</sup>/g for SIPr3. The Higher attenuation and absorption coefficients were found for Pr-rich alloys. Pr therefore increase the ability of the SIPr-alloy to attenuate and absorb photon energy. The optical parameters of the investigated alloys could be used to identify their optical applications. SIPr3 had comparatively higher shielding ability compared to some known shields and could thus be used for radiation control and protection purposes.</div></div>","PeriodicalId":16920,"journal":{"name":"Journal of Radiation Research and Applied Sciences","volume":"17 4","pages":"Article 101147"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical transmission, dielectric constants, and gamma shielding performance of Se95-xIn5Prx metallic alloys: Radiation protection applications\",\"authors\":\"Z.A. Alrowaili , Jamila S. Alzahrani , Canel Eke , I.O. Olarinoye , Sultan Alomairy , M.S. Al-Buriahi\",\"doi\":\"10.1016/j.jrras.2024.101147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to the high density of metals, metallic materials such as alloys have the potential to have high gamma-radiation-absorbing abilities. This would make them relevant in a radiation environment as either a shielding material or a radiation sensor. These would, however, depend on their gamma radiation responses. Research aimed at evaluating the gamma response parameters of different glassy alloys that have technical applications is scarce compared to the traditional characterization with respect to optical features, structural evolution, and mechanical strength. In this paper, the optical and radiation shielding abilities of Se95-xIn5Prx (x = 2, 4, and 6) glassy alloys were investigated using standard theoretical techniques. The mass attenuation coefficient (MAC) of the materials was computed using the XCOM software. Reflection loss values are 0.20218, 0.22634, and 0.22908 for SIPr1, SIPr2, and SIPr3, respectively, while the optical transmittance values are 0.66365, 0.63087, and 0.62723 in the same order. The metallization criterion declined when Pr increased in the alloy. The values of MAC ranged from 0.0317 cm<sup>2</sup>/g to 98.2099 cm<sup>2</sup>/g for SIPr1, 0.0319 cm<sup>2</sup>/g to 97.3798 cm<sup>2</sup>/g for SIPr2 and 0.0322 cm<sup>2</sup>/g to 96.5372 cm<sup>2</sup>/g for SIPr3. The Higher attenuation and absorption coefficients were found for Pr-rich alloys. Pr therefore increase the ability of the SIPr-alloy to attenuate and absorb photon energy. The optical parameters of the investigated alloys could be used to identify their optical applications. SIPr3 had comparatively higher shielding ability compared to some known shields and could thus be used for radiation control and protection purposes.</div></div>\",\"PeriodicalId\":16920,\"journal\":{\"name\":\"Journal of Radiation Research and Applied Sciences\",\"volume\":\"17 4\",\"pages\":\"Article 101147\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Radiation Research and Applied Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1687850724003315\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research and Applied Sciences","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687850724003315","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Optical transmission, dielectric constants, and gamma shielding performance of Se95-xIn5Prx metallic alloys: Radiation protection applications
Due to the high density of metals, metallic materials such as alloys have the potential to have high gamma-radiation-absorbing abilities. This would make them relevant in a radiation environment as either a shielding material or a radiation sensor. These would, however, depend on their gamma radiation responses. Research aimed at evaluating the gamma response parameters of different glassy alloys that have technical applications is scarce compared to the traditional characterization with respect to optical features, structural evolution, and mechanical strength. In this paper, the optical and radiation shielding abilities of Se95-xIn5Prx (x = 2, 4, and 6) glassy alloys were investigated using standard theoretical techniques. The mass attenuation coefficient (MAC) of the materials was computed using the XCOM software. Reflection loss values are 0.20218, 0.22634, and 0.22908 for SIPr1, SIPr2, and SIPr3, respectively, while the optical transmittance values are 0.66365, 0.63087, and 0.62723 in the same order. The metallization criterion declined when Pr increased in the alloy. The values of MAC ranged from 0.0317 cm2/g to 98.2099 cm2/g for SIPr1, 0.0319 cm2/g to 97.3798 cm2/g for SIPr2 and 0.0322 cm2/g to 96.5372 cm2/g for SIPr3. The Higher attenuation and absorption coefficients were found for Pr-rich alloys. Pr therefore increase the ability of the SIPr-alloy to attenuate and absorb photon energy. The optical parameters of the investigated alloys could be used to identify their optical applications. SIPr3 had comparatively higher shielding ability compared to some known shields and could thus be used for radiation control and protection purposes.
期刊介绍:
Journal of Radiation Research and Applied Sciences provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and applications of nuclear, radiation and isotopes in biology, medicine, drugs, biochemistry, microbiology, agriculture, entomology, food technology, chemistry, physics, solid states, engineering, environmental and applied sciences.