Xiaochen Yang , Liqun Du , Aoqi Li , Mengxi Wu , Changhao Wu , Jingmin Li
{"title":"感应电极通罩电化学微加工新方法","authors":"Xiaochen Yang , Liqun Du , Aoqi Li , Mengxi Wu , Changhao Wu , Jingmin Li","doi":"10.1016/j.ijmachtools.2024.104221","DOIUrl":null,"url":null,"abstract":"<div><div>Through-mask electrochemical micromachining (TMEMM) is a key method for fabricating metal microstructures. However, the accuracy of TMEMM often falls short of the stringent requirements for many applications, primarily due to the uncontrolled electric field during the machining process. To overcome this limitation, this paper introduces a novel method: induction electrode through-mask electrochemical micromachining (IETMEMM). In this method, two feeder electrodes act as the anode and cathode, generating an electric field where the wireless workpiece is placed. This study explores the principles of electric field control in IETMEMM and develops a simulation model to highlight the method's unique advantages under specific electric field distributions. The findings indicate substantial improvements. Leveraging the self-stopping feature, a MEMS inertial switch was fabricated with high accuracy, achieving a non-uniformity of just 3.8%—a remarkable 96.2 % enhancement in accuracy compared to traditional TMEMM. Additionally, the gradient etching advantage facilitated the creation of both gradient-depth and V-shaped microchannel arrays. Moreover, the parallel machining advantage enabled the simultaneous fabrication of three identical microstructures in just 20 s. These outcomes demonstrate the significant potential of IETMEMM for industrial applications.</div></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"203 ","pages":"Article 104221"},"PeriodicalIF":14.0000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel method of induction electrode through-mask electrochemical micromachining\",\"authors\":\"Xiaochen Yang , Liqun Du , Aoqi Li , Mengxi Wu , Changhao Wu , Jingmin Li\",\"doi\":\"10.1016/j.ijmachtools.2024.104221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Through-mask electrochemical micromachining (TMEMM) is a key method for fabricating metal microstructures. However, the accuracy of TMEMM often falls short of the stringent requirements for many applications, primarily due to the uncontrolled electric field during the machining process. To overcome this limitation, this paper introduces a novel method: induction electrode through-mask electrochemical micromachining (IETMEMM). In this method, two feeder electrodes act as the anode and cathode, generating an electric field where the wireless workpiece is placed. This study explores the principles of electric field control in IETMEMM and develops a simulation model to highlight the method's unique advantages under specific electric field distributions. The findings indicate substantial improvements. Leveraging the self-stopping feature, a MEMS inertial switch was fabricated with high accuracy, achieving a non-uniformity of just 3.8%—a remarkable 96.2 % enhancement in accuracy compared to traditional TMEMM. Additionally, the gradient etching advantage facilitated the creation of both gradient-depth and V-shaped microchannel arrays. Moreover, the parallel machining advantage enabled the simultaneous fabrication of three identical microstructures in just 20 s. These outcomes demonstrate the significant potential of IETMEMM for industrial applications.</div></div>\",\"PeriodicalId\":14011,\"journal\":{\"name\":\"International Journal of Machine Tools & Manufacture\",\"volume\":\"203 \",\"pages\":\"Article 104221\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Tools & Manufacture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089069552400107X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089069552400107X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
A novel method of induction electrode through-mask electrochemical micromachining
Through-mask electrochemical micromachining (TMEMM) is a key method for fabricating metal microstructures. However, the accuracy of TMEMM often falls short of the stringent requirements for many applications, primarily due to the uncontrolled electric field during the machining process. To overcome this limitation, this paper introduces a novel method: induction electrode through-mask electrochemical micromachining (IETMEMM). In this method, two feeder electrodes act as the anode and cathode, generating an electric field where the wireless workpiece is placed. This study explores the principles of electric field control in IETMEMM and develops a simulation model to highlight the method's unique advantages under specific electric field distributions. The findings indicate substantial improvements. Leveraging the self-stopping feature, a MEMS inertial switch was fabricated with high accuracy, achieving a non-uniformity of just 3.8%—a remarkable 96.2 % enhancement in accuracy compared to traditional TMEMM. Additionally, the gradient etching advantage facilitated the creation of both gradient-depth and V-shaped microchannel arrays. Moreover, the parallel machining advantage enabled the simultaneous fabrication of three identical microstructures in just 20 s. These outcomes demonstrate the significant potential of IETMEMM for industrial applications.
期刊介绍:
The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics:
- Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms.
- Significant scientific advancements in existing or new processes and machines.
- In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes.
- Tool design, utilization, and comprehensive studies of failure mechanisms.
- Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope.
- Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes.
- Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools").
- Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).