Ateeq Ur Rehman , Mashael Maashi , Jamal Alsamri , Hany Mahgoub , Randa Allafi , Ashit Kumar Dutta , Wali Ullah Khan , Ali Nauman
{"title":"利用多代理强化学习优化支持 MEC 的近场无线通信中的销售点服务","authors":"Ateeq Ur Rehman , Mashael Maashi , Jamal Alsamri , Hany Mahgoub , Randa Allafi , Ashit Kumar Dutta , Wali Ullah Khan , Ali Nauman","doi":"10.1016/j.comcom.2024.107962","DOIUrl":null,"url":null,"abstract":"<div><div>In the next-generation communication system, near-field communication (NFC) is a key enabler of contactless transactions, including mobile payments, ticketing, and access control. With the growing demand for contactless solutions, NFC technology will play a pivotal role in enabling secure and convenient payment experiences across various sectors. In contrast, Internet of Things (IoT) devices such as phones’ Point of Sale (PoS) constitute limited battery life and finite computational resources that act as a bottleneck to doing the authentication in a minimal amount of time. Because of this, it garnered considerable attention in both academic and industrial realms. To overcome this, in this work we consider the Multiple Mobile Edge Computing (MEC) as an effective solution that provides extensive computation to PoS connected to it. To address the above, this work considers the PoS-enabled multi-MEC network to guarantee NFC communication reliably and effectively. For this, we formulate the joint optimization problem to maximize the probability of successful authentication while minimizing the queueing delay by jointly optimizing the computation and communication resources by utilizing a multi-agent reinforcement learning optimization approach. Through extensive simulations based on real-world scenarios, the effectiveness of the proposed approach was demonstrated. The results demonstrate that adjusting the complexity and learning rates of the model, coupled with strategic allocation of edge resources, significantly increased authentication success rates. Furthermore, the optimal allocation strategy was found to be crucial in reducing latency and improving authentication success by approximately 9.75%, surpassing other approaches. This study highlights the importance of resource management in optimizing MEC systems, paving the way for advancements in establishing secure, efficient, and dependable systems within the Internet of Things framework.</div></div>","PeriodicalId":55224,"journal":{"name":"Computer Communications","volume":"228 ","pages":"Article 107962"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing point-of-sale services in MEC enabled near field wireless communications using multi-agent reinforcement learning\",\"authors\":\"Ateeq Ur Rehman , Mashael Maashi , Jamal Alsamri , Hany Mahgoub , Randa Allafi , Ashit Kumar Dutta , Wali Ullah Khan , Ali Nauman\",\"doi\":\"10.1016/j.comcom.2024.107962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the next-generation communication system, near-field communication (NFC) is a key enabler of contactless transactions, including mobile payments, ticketing, and access control. With the growing demand for contactless solutions, NFC technology will play a pivotal role in enabling secure and convenient payment experiences across various sectors. In contrast, Internet of Things (IoT) devices such as phones’ Point of Sale (PoS) constitute limited battery life and finite computational resources that act as a bottleneck to doing the authentication in a minimal amount of time. Because of this, it garnered considerable attention in both academic and industrial realms. To overcome this, in this work we consider the Multiple Mobile Edge Computing (MEC) as an effective solution that provides extensive computation to PoS connected to it. To address the above, this work considers the PoS-enabled multi-MEC network to guarantee NFC communication reliably and effectively. For this, we formulate the joint optimization problem to maximize the probability of successful authentication while minimizing the queueing delay by jointly optimizing the computation and communication resources by utilizing a multi-agent reinforcement learning optimization approach. Through extensive simulations based on real-world scenarios, the effectiveness of the proposed approach was demonstrated. The results demonstrate that adjusting the complexity and learning rates of the model, coupled with strategic allocation of edge resources, significantly increased authentication success rates. Furthermore, the optimal allocation strategy was found to be crucial in reducing latency and improving authentication success by approximately 9.75%, surpassing other approaches. This study highlights the importance of resource management in optimizing MEC systems, paving the way for advancements in establishing secure, efficient, and dependable systems within the Internet of Things framework.</div></div>\",\"PeriodicalId\":55224,\"journal\":{\"name\":\"Computer Communications\",\"volume\":\"228 \",\"pages\":\"Article 107962\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140366424003098\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140366424003098","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Optimizing point-of-sale services in MEC enabled near field wireless communications using multi-agent reinforcement learning
In the next-generation communication system, near-field communication (NFC) is a key enabler of contactless transactions, including mobile payments, ticketing, and access control. With the growing demand for contactless solutions, NFC technology will play a pivotal role in enabling secure and convenient payment experiences across various sectors. In contrast, Internet of Things (IoT) devices such as phones’ Point of Sale (PoS) constitute limited battery life and finite computational resources that act as a bottleneck to doing the authentication in a minimal amount of time. Because of this, it garnered considerable attention in both academic and industrial realms. To overcome this, in this work we consider the Multiple Mobile Edge Computing (MEC) as an effective solution that provides extensive computation to PoS connected to it. To address the above, this work considers the PoS-enabled multi-MEC network to guarantee NFC communication reliably and effectively. For this, we formulate the joint optimization problem to maximize the probability of successful authentication while minimizing the queueing delay by jointly optimizing the computation and communication resources by utilizing a multi-agent reinforcement learning optimization approach. Through extensive simulations based on real-world scenarios, the effectiveness of the proposed approach was demonstrated. The results demonstrate that adjusting the complexity and learning rates of the model, coupled with strategic allocation of edge resources, significantly increased authentication success rates. Furthermore, the optimal allocation strategy was found to be crucial in reducing latency and improving authentication success by approximately 9.75%, surpassing other approaches. This study highlights the importance of resource management in optimizing MEC systems, paving the way for advancements in establishing secure, efficient, and dependable systems within the Internet of Things framework.
期刊介绍:
Computer and Communications networks are key infrastructures of the information society with high socio-economic value as they contribute to the correct operations of many critical services (from healthcare to finance and transportation). Internet is the core of today''s computer-communication infrastructures. This has transformed the Internet, from a robust network for data transfer between computers, to a global, content-rich, communication and information system where contents are increasingly generated by the users, and distributed according to human social relations. Next-generation network technologies, architectures and protocols are therefore required to overcome the limitations of the legacy Internet and add new capabilities and services. The future Internet should be ubiquitous, secure, resilient, and closer to human communication paradigms.
Computer Communications is a peer-reviewed international journal that publishes high-quality scientific articles (both theory and practice) and survey papers covering all aspects of future computer communication networks (on all layers, except the physical layer), with a special attention to the evolution of the Internet architecture, protocols, services, and applications.