Qiang Cheng , Akram Muhammad , Ossi Kaario , Zeeshan Ahmad , Larmi Martti
{"title":"作为可持续燃料的氨:回顾与新战略","authors":"Qiang Cheng , Akram Muhammad , Ossi Kaario , Zeeshan Ahmad , Larmi Martti","doi":"10.1016/j.rser.2024.114995","DOIUrl":null,"url":null,"abstract":"<div><div>Ammonia is increasingly recognized as a viable alternative fuel that could significantly reduce greenhouse gas emissions without requiring major modifications to existing engine technologies. However, its high auto-ignition temperature, slow flame speed, and narrow flammability range present significant barriers, particularly under high-speed combustion conditions. This review explores the potential of ammonia as a sustainable fuel for internal combustion engines, focusing on its advantages and challenge. The review draws on a wide range of studies, from NH<sub>3</sub> production, application, to the combustion mechanisms, that explore various strategies for enhancing NH₃ combustion in both spark ignition and compression ignition engines. Fundamentals and key approaches discussed include using hydrogen and hydrocarbon fuels as combustion promoters, which have been shown to improve ignition and flame propagation. Literature on fuel injection strategies, such as port fuel injection, direct injection, and dual-fuel injection, are examined to highlight their influence on NH₃-air mixing and combustion efficiency. Furthermore, the review delves into advanced ignition technologies, such as low-temperature plasma ignition, turbulent jet ignition, and laser ignition, which are explored for the potential to overcome the ignition difficulties associated with NH₃. After a comprehensive analysis based on the literature, the intelligent liquid-gas twin-fluid co-injection system (iTFI) emerges as a promising approach, offering improved combustion stability and efficiency through better fuel-air mixture preparation. By synthesizing the existing research, this review outlines the progress made in NH₃ combustion and identifies areas where further study is needed to fully realize its potential as a sustainable fuel.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":null,"pages":null},"PeriodicalIF":16.3000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ammonia as a sustainable fuel: Review and novel strategies\",\"authors\":\"Qiang Cheng , Akram Muhammad , Ossi Kaario , Zeeshan Ahmad , Larmi Martti\",\"doi\":\"10.1016/j.rser.2024.114995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ammonia is increasingly recognized as a viable alternative fuel that could significantly reduce greenhouse gas emissions without requiring major modifications to existing engine technologies. However, its high auto-ignition temperature, slow flame speed, and narrow flammability range present significant barriers, particularly under high-speed combustion conditions. This review explores the potential of ammonia as a sustainable fuel for internal combustion engines, focusing on its advantages and challenge. The review draws on a wide range of studies, from NH<sub>3</sub> production, application, to the combustion mechanisms, that explore various strategies for enhancing NH₃ combustion in both spark ignition and compression ignition engines. Fundamentals and key approaches discussed include using hydrogen and hydrocarbon fuels as combustion promoters, which have been shown to improve ignition and flame propagation. Literature on fuel injection strategies, such as port fuel injection, direct injection, and dual-fuel injection, are examined to highlight their influence on NH₃-air mixing and combustion efficiency. Furthermore, the review delves into advanced ignition technologies, such as low-temperature plasma ignition, turbulent jet ignition, and laser ignition, which are explored for the potential to overcome the ignition difficulties associated with NH₃. After a comprehensive analysis based on the literature, the intelligent liquid-gas twin-fluid co-injection system (iTFI) emerges as a promising approach, offering improved combustion stability and efficiency through better fuel-air mixture preparation. By synthesizing the existing research, this review outlines the progress made in NH₃ combustion and identifies areas where further study is needed to fully realize its potential as a sustainable fuel.</div></div>\",\"PeriodicalId\":418,\"journal\":{\"name\":\"Renewable and Sustainable Energy Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable and Sustainable Energy Reviews\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364032124007214\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032124007214","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Ammonia as a sustainable fuel: Review and novel strategies
Ammonia is increasingly recognized as a viable alternative fuel that could significantly reduce greenhouse gas emissions without requiring major modifications to existing engine technologies. However, its high auto-ignition temperature, slow flame speed, and narrow flammability range present significant barriers, particularly under high-speed combustion conditions. This review explores the potential of ammonia as a sustainable fuel for internal combustion engines, focusing on its advantages and challenge. The review draws on a wide range of studies, from NH3 production, application, to the combustion mechanisms, that explore various strategies for enhancing NH₃ combustion in both spark ignition and compression ignition engines. Fundamentals and key approaches discussed include using hydrogen and hydrocarbon fuels as combustion promoters, which have been shown to improve ignition and flame propagation. Literature on fuel injection strategies, such as port fuel injection, direct injection, and dual-fuel injection, are examined to highlight their influence on NH₃-air mixing and combustion efficiency. Furthermore, the review delves into advanced ignition technologies, such as low-temperature plasma ignition, turbulent jet ignition, and laser ignition, which are explored for the potential to overcome the ignition difficulties associated with NH₃. After a comprehensive analysis based on the literature, the intelligent liquid-gas twin-fluid co-injection system (iTFI) emerges as a promising approach, offering improved combustion stability and efficiency through better fuel-air mixture preparation. By synthesizing the existing research, this review outlines the progress made in NH₃ combustion and identifies areas where further study is needed to fully realize its potential as a sustainable fuel.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.