{"title":"用于窄带主动噪声控制的无辅助噪声在线次级路径建模算法","authors":"Cong Wang , Ming Wu , Jianfeng Guo , Jun Yang","doi":"10.1016/j.sigpro.2024.109737","DOIUrl":null,"url":null,"abstract":"<div><div>Online secondary path modeling (SPM) is a practical method for real-time noise reduction in narrowband active noise control (NANC) systems, particularly when addressing variations in the secondary path. However, the common practice of using auxiliary noise for online SPM increases the residual noise power and deteriorates the noise reduction performance. The present study proposes a strategy that does not rely on auxiliary noise for online SPM in NANC systems. The proposed algorithm comprises two stages: Stage A models the primary path, whereas Stage B concurrently engages in online SPM and active noise control. The control signal is used to model the discrete Fourier transform (DFT) coefficients of the secondary path, avoiding the need for an auxiliary noise and significantly reducing the computational complexity. Moreover, the predicted primary path from Stage A is employed to obtain the pure desired signal of the online SPM. This strategy decorrelates the primary noise and the modeling signal, and accelerates the convergence of the algorithm. Simulations of recorded data demonstrate that the proposed algorithm can quickly track variations in both the primary and secondary paths, and maintain the noise reduction performance and stability of the system.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"227 ","pages":"Article 109737"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online secondary path modeling algorithm without auxiliary noise for narrowband active noise control\",\"authors\":\"Cong Wang , Ming Wu , Jianfeng Guo , Jun Yang\",\"doi\":\"10.1016/j.sigpro.2024.109737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Online secondary path modeling (SPM) is a practical method for real-time noise reduction in narrowband active noise control (NANC) systems, particularly when addressing variations in the secondary path. However, the common practice of using auxiliary noise for online SPM increases the residual noise power and deteriorates the noise reduction performance. The present study proposes a strategy that does not rely on auxiliary noise for online SPM in NANC systems. The proposed algorithm comprises two stages: Stage A models the primary path, whereas Stage B concurrently engages in online SPM and active noise control. The control signal is used to model the discrete Fourier transform (DFT) coefficients of the secondary path, avoiding the need for an auxiliary noise and significantly reducing the computational complexity. Moreover, the predicted primary path from Stage A is employed to obtain the pure desired signal of the online SPM. This strategy decorrelates the primary noise and the modeling signal, and accelerates the convergence of the algorithm. Simulations of recorded data demonstrate that the proposed algorithm can quickly track variations in both the primary and secondary paths, and maintain the noise reduction performance and stability of the system.</div></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"227 \",\"pages\":\"Article 109737\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168424003578\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424003578","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Online secondary path modeling algorithm without auxiliary noise for narrowband active noise control
Online secondary path modeling (SPM) is a practical method for real-time noise reduction in narrowband active noise control (NANC) systems, particularly when addressing variations in the secondary path. However, the common practice of using auxiliary noise for online SPM increases the residual noise power and deteriorates the noise reduction performance. The present study proposes a strategy that does not rely on auxiliary noise for online SPM in NANC systems. The proposed algorithm comprises two stages: Stage A models the primary path, whereas Stage B concurrently engages in online SPM and active noise control. The control signal is used to model the discrete Fourier transform (DFT) coefficients of the secondary path, avoiding the need for an auxiliary noise and significantly reducing the computational complexity. Moreover, the predicted primary path from Stage A is employed to obtain the pure desired signal of the online SPM. This strategy decorrelates the primary noise and the modeling signal, and accelerates the convergence of the algorithm. Simulations of recorded data demonstrate that the proposed algorithm can quickly track variations in both the primary and secondary paths, and maintain the noise reduction performance and stability of the system.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.