基于 VMD-WOA-DELM 的太阳能热电厂直接法线辐照度预测方法

IF 1.7 3区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Applied Superconductivity Pub Date : 2024-09-20 DOI:10.1109/TASC.2024.3465370
Siyuan Zhang;Dongsheng Niu;Zhi Zhou;Yanglong Duan;Jian Chen;Genben Yang
{"title":"基于 VMD-WOA-DELM 的太阳能热电厂直接法线辐照度预测方法","authors":"Siyuan Zhang;Dongsheng Niu;Zhi Zhou;Yanglong Duan;Jian Chen;Genben Yang","doi":"10.1109/TASC.2024.3465370","DOIUrl":null,"url":null,"abstract":"The Direct Normal Irradiance (DNI), being the energy source for solar thermal power plants, can remarkably impact the reliability and efficiency of these plants because of its inherent randomness and fluctuations. In this view, we propose a prediction method for DNI based on the Variational Mode Decomposition-Whale Optimization Algorithm-Deep Extreme Learning Machine (VMD-WOA-DELM) to optimize the control and operation of such plants. Initially, the VMD technique is utilized to decompose the DNI into intrinsic mode function components, followed by the extraction of temporal and frequency domain characteristics to form feature vectors for each component. Subsequently, the WOA is employed for parameter optimization, enhancing algorithm stability, and yielding the optimal classification model. Finally, the solar DNI is determined by an improved Extreme Learning Machine algorithm, DELM. Taking a solar thermal power plant in Qinghai Province as a case study, an analysis of actual predictive performance and corresponding performance evaluation indicators concludes that the variations and numerical values of DNI can be accurately forecasted using the established prediction approach.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"34 8","pages":"1-4"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction Method of Direct Normal Irradiance for Solar Thermal Power Plants Based on VMD-WOA-DELM\",\"authors\":\"Siyuan Zhang;Dongsheng Niu;Zhi Zhou;Yanglong Duan;Jian Chen;Genben Yang\",\"doi\":\"10.1109/TASC.2024.3465370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Direct Normal Irradiance (DNI), being the energy source for solar thermal power plants, can remarkably impact the reliability and efficiency of these plants because of its inherent randomness and fluctuations. In this view, we propose a prediction method for DNI based on the Variational Mode Decomposition-Whale Optimization Algorithm-Deep Extreme Learning Machine (VMD-WOA-DELM) to optimize the control and operation of such plants. Initially, the VMD technique is utilized to decompose the DNI into intrinsic mode function components, followed by the extraction of temporal and frequency domain characteristics to form feature vectors for each component. Subsequently, the WOA is employed for parameter optimization, enhancing algorithm stability, and yielding the optimal classification model. Finally, the solar DNI is determined by an improved Extreme Learning Machine algorithm, DELM. Taking a solar thermal power plant in Qinghai Province as a case study, an analysis of actual predictive performance and corresponding performance evaluation indicators concludes that the variations and numerical values of DNI can be accurately forecasted using the established prediction approach.\",\"PeriodicalId\":13104,\"journal\":{\"name\":\"IEEE Transactions on Applied Superconductivity\",\"volume\":\"34 8\",\"pages\":\"1-4\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Applied Superconductivity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10684602/\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10684602/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

直接正辐照度(DNI)是太阳能热发电厂的能源,由于其固有的随机性和波动性,会对这些发电厂的可靠性和效率产生显著影响。有鉴于此,我们提出了一种基于变异模式分解-鲸鱼优化算法-深度极端学习机(VMD-WOA-DELM)的 DNI 预测方法,以优化此类发电厂的控制和运行。首先,利用 VMD 技术将 DNI 分解为固有模式函数分量,然后提取时域和频域特征,形成每个分量的特征向量。随后,利用 WOA 进行参数优化,增强算法的稳定性,并得出最佳分类模型。最后,通过改进的极限学习机算法 DELM 确定太阳能 DNI。以青海省的一家太阳能热电厂为例,通过对实际预测性能和相应的性能评估指标进行分析,得出结论认为,利用所建立的预测方法,可以准确预测 DNI 的变化和数值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction Method of Direct Normal Irradiance for Solar Thermal Power Plants Based on VMD-WOA-DELM
The Direct Normal Irradiance (DNI), being the energy source for solar thermal power plants, can remarkably impact the reliability and efficiency of these plants because of its inherent randomness and fluctuations. In this view, we propose a prediction method for DNI based on the Variational Mode Decomposition-Whale Optimization Algorithm-Deep Extreme Learning Machine (VMD-WOA-DELM) to optimize the control and operation of such plants. Initially, the VMD technique is utilized to decompose the DNI into intrinsic mode function components, followed by the extraction of temporal and frequency domain characteristics to form feature vectors for each component. Subsequently, the WOA is employed for parameter optimization, enhancing algorithm stability, and yielding the optimal classification model. Finally, the solar DNI is determined by an improved Extreme Learning Machine algorithm, DELM. Taking a solar thermal power plant in Qinghai Province as a case study, an analysis of actual predictive performance and corresponding performance evaluation indicators concludes that the variations and numerical values of DNI can be accurately forecasted using the established prediction approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Applied Superconductivity
IEEE Transactions on Applied Superconductivity 工程技术-工程:电子与电气
CiteScore
3.50
自引率
33.30%
发文量
650
审稿时长
2.3 months
期刊介绍: IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.
期刊最新文献
ASEMD2023 – Introduction A Broadband Mechanically Tuned Superconducting Cavity Design Suitable for the Fermilab Main Injector A High-Temperature Superconducting Triplexer Based on Co-Coupling of Multimode Resonators A Drag-Torque Method for Measuring AC Losses in Superconducting Samples 4-Bit Factorization Circuit Composed of Multiplier Units With Superconducting Flux Qubits Toward Quantum Annealing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1