均匀超音速流动中的宽带旋转光谱学:用于反应动力学和低温动力学的啁啾脉冲/均匀流

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-10-15 DOI:10.1021/acs.accounts.4c00489
Nureshan Dias, Nicolas Suas-David, Shameemah Thawoos, Arthur G. Suits
{"title":"均匀超音速流动中的宽带旋转光谱学:用于反应动力学和低温动力学的啁啾脉冲/均匀流","authors":"Nureshan Dias, Nicolas Suas-David, Shameemah Thawoos, Arthur G. Suits","doi":"10.1021/acs.accounts.4c00489","DOIUrl":null,"url":null,"abstract":"The study of gas-phase chemical reactions at very low temperatures first became possible with the development and implementation of the CRESU (French acronym for Reaction Kinetics in Uniform Supersonic Flows) technique. CRESU relies on a uniform supersonic flow produced by expansion of a gas through a Laval (convergent-divergent) nozzle to produce a wall-less reactor at temperatures from 10 to 200 K and densities of 10<sup>16</sup>–10<sup>18</sup> cm<sup>–3</sup> for the study of low temperature kinetics, with particular application to astrochemistry. In recent years, we have combined uniform flows with revolutionary advances in broadband rotational spectroscopy to yield an instrument that affords near-universal detection for novel applications in photodissociation, reaction dynamics, and kinetics. This combination of uniform supersonic flows with chirped-pulse Fourier-transform microwave spectroscopy (Chirped-Pulse/Uniform Flow, CPUF) permits detection of any species with a modest dipole moment, thermalized to the uniform temperature of the gas flow, with isomer, conformer, and vibrational state specificity. In addition, the use of broadband, high-resolution, and time-dependent (microsecond time scale) micro- and mm-wave spectroscopy makes it an ideal tool for characterizing both transient and stable molecules, as well as studying their spectroscopy and dynamics.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Broadband Rotational Spectroscopy in Uniform Supersonic Flows: Chirped Pulse/Uniform Flow for Reaction Dynamics and Low Temperature Kinetics\",\"authors\":\"Nureshan Dias, Nicolas Suas-David, Shameemah Thawoos, Arthur G. Suits\",\"doi\":\"10.1021/acs.accounts.4c00489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of gas-phase chemical reactions at very low temperatures first became possible with the development and implementation of the CRESU (French acronym for Reaction Kinetics in Uniform Supersonic Flows) technique. CRESU relies on a uniform supersonic flow produced by expansion of a gas through a Laval (convergent-divergent) nozzle to produce a wall-less reactor at temperatures from 10 to 200 K and densities of 10<sup>16</sup>–10<sup>18</sup> cm<sup>–3</sup> for the study of low temperature kinetics, with particular application to astrochemistry. In recent years, we have combined uniform flows with revolutionary advances in broadband rotational spectroscopy to yield an instrument that affords near-universal detection for novel applications in photodissociation, reaction dynamics, and kinetics. This combination of uniform supersonic flows with chirped-pulse Fourier-transform microwave spectroscopy (Chirped-Pulse/Uniform Flow, CPUF) permits detection of any species with a modest dipole moment, thermalized to the uniform temperature of the gas flow, with isomer, conformer, and vibrational state specificity. In addition, the use of broadband, high-resolution, and time-dependent (microsecond time scale) micro- and mm-wave spectroscopy makes it an ideal tool for characterizing both transient and stable molecules, as well as studying their spectroscopy and dynamics.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.accounts.4c00489\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.accounts.4c00489","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Broadband Rotational Spectroscopy in Uniform Supersonic Flows: Chirped Pulse/Uniform Flow for Reaction Dynamics and Low Temperature Kinetics
The study of gas-phase chemical reactions at very low temperatures first became possible with the development and implementation of the CRESU (French acronym for Reaction Kinetics in Uniform Supersonic Flows) technique. CRESU relies on a uniform supersonic flow produced by expansion of a gas through a Laval (convergent-divergent) nozzle to produce a wall-less reactor at temperatures from 10 to 200 K and densities of 1016–1018 cm–3 for the study of low temperature kinetics, with particular application to astrochemistry. In recent years, we have combined uniform flows with revolutionary advances in broadband rotational spectroscopy to yield an instrument that affords near-universal detection for novel applications in photodissociation, reaction dynamics, and kinetics. This combination of uniform supersonic flows with chirped-pulse Fourier-transform microwave spectroscopy (Chirped-Pulse/Uniform Flow, CPUF) permits detection of any species with a modest dipole moment, thermalized to the uniform temperature of the gas flow, with isomer, conformer, and vibrational state specificity. In addition, the use of broadband, high-resolution, and time-dependent (microsecond time scale) micro- and mm-wave spectroscopy makes it an ideal tool for characterizing both transient and stable molecules, as well as studying their spectroscopy and dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Broadband Rotational Spectroscopy in Uniform Supersonic Flows: Chirped Pulse/Uniform Flow for Reaction Dynamics and Low Temperature Kinetics Conversion of Carbon Dioxide into Molecular-based Porous Frameworks Mechanisms of Controllable Growth and Ohmic Contact of Two-Dimensional Molybdenum Disulfide: Insight from Atomistic Simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1